...
首页> 外文期刊>Microscopy >Application of machine learning techniques to electron microscopic/spectroscopic image data analysis
【24h】

Application of machine learning techniques to electron microscopic/spectroscopic image data analysis

机译:机器学习技术在电子显微镜/光谱图像数据分析中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

The combination of scanning transmission electron microscopy (STEM) with analytical instruments has become one of the most indispensable analytical tools in materials science. A set of microscopic image/spectral intensities collected from many sampling points in a region of interest, in which multiple physical/chemical components may be spatially and spectrally entangled, could be expected to be a rich source of information about a material. To unfold such an entangled image comprising information and spectral features into its individual pure components would necessitate the use of statistical treatment based on informatics and statistics. These computer-aided schemes or techniques are referred to as multivariate curve resolution, blind source separation or hyperspectral image analysis, depending on their application fields, and are classified as a subset of machine learning. In this review, we introduce non-negative matrix factorization, one of these unfolding techniques, to solve a wide variety of problems associated with the analysis of materials, particularly those related to STEM, electron energy-loss spectroscopy and energy-dispersive X-ray spectroscopy. This review, which commences with the description of the basic concept, the advantages and drawbacks of the technique, presents several additional strategies to overcome existing problems and their extensions to more general tensor decomposition schemes for further flexible applications are described.
机译:扫描透射电子显微镜(Stew)与分析仪器的组合已成为材料科学中最不可或缺的分析工具之一。从感兴趣区域中的许多采样点收集的一组显微图像/光谱强度,其中多个物理/化学成分可以在空间和光谱缠结,可以预期是关于材料的丰富信息来源。为了展开包括信息和光谱特征的这种纠缠的图像进入其各个纯组分将需要基于信息学和统计数据使用统计处理。这些计算机辅助方案或技术被称为多变量曲线分辨率,盲源分离或高光谱图像分析,具体取决于其应用领域,并且被归类为机器学习的子集。在本文中,我们引入了非负矩阵分解,其中一种展开技术,解决了与材料分析相关的各种问题,特别是与茎,电子能源损失光谱和能量分散X射线有关的问题光谱学。本综述,该综述开始描述基本概念,技术的优点和缺点,呈现了几种额外的策略来克服现有问题,并且描述了对更一般的张量分解方案进行进一步灵活应用的延伸。

著录项

  • 来源
    《Microscopy》 |2019年第1期|110-122|共13页
  • 作者

    Shunsuke Muto; Motoki Shiga;

  • 作者单位

    Electron Nanoscopy Division Advanced Measurement Technology Center Institute of Materials and Systems for Sustainability Nagoya University Furo-cho Chikusa-ku Nagoya 464-8603 Japan;

    smuto@imass.nagoya-u.ac.jp;

    Faculty of Engineering Gifu University 1-1 Yanagido Gifu Gifu 501-1193 Japan;

    PRESTO Japan Science and Technology Agency 4-1-8 Honcho Kawaguchi-shi Saitama 332-0012 Japan;

    Center for Advanced Intelligence Project RIKEN Nihonbashi 1-chome Mitsui Building 15th floor 1-4-1 Nihonbashi Chuo-ku Tokyo 103-0027 Japan;

    shiga_m@gifu-u.ac.jp;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    tensor decomposition; non-negative matrix factorization; scanning transmission electron microscopy; electron energy-loss spectroscopy; hyperspectral image analysis;

    机译:张量分解;非负矩阵分解;扫描透射电子显微镜;电子能损光谱;高光谱图像分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号