...
首页> 外文期刊>Microfluidics and nanofluidics >Predicting microscale gas flows and rarefaction effects through extended Navier-Stokes-Fourier equations from phoretic transport considerations
【24h】

Predicting microscale gas flows and rarefaction effects through extended Navier-Stokes-Fourier equations from phoretic transport considerations

机译:通过电泳迁移考虑,通过扩展的Navier-Stokes-Fourier方程预测微尺度的气体流动和稀疏效应

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We test an extended continuum-based approach for analyzing micro-scale gas flows over a wide range of Knudsen number and Mach number. In this approach, additional terms are invoked in the constitutive relations of Navier-Stokes-Fourier equations, which originate from the considerations of phoretic motion as triggered by strong local gradients of density and/or temperature. Such augmented considerations are shown to implicitly take care of the complexities in the flow physics in a thermo-physically consistent sense, so that no special boundary treatment becomes necessary to address phenomenon such as Knudsen paradox. The transition regime gas flows, which are otherwise to be addressed through computationally intensive molecular simulations, become well tractable within the extended quasi-continuum framework without necessitating the use of any fitting parameters. Rigorous comparisons with direct simulation Monte Carlo (DSMC) computations and experimental results support this conjecture for cases of isothermal pressure driven gas flows and high Mach number shock wave flows through rectangular microchannels.
机译:我们测试了一种基于连续谱的扩展方法,用于分析广泛的克努森数和马赫数范围内的微型气体流量。在这种方法中,在Navier-Stokes-Fourier方程的本构关系中调用了其他项,这些项源自对密度和/或温度的强局部梯度触发的隐喻运动的考虑。事实证明,这些增加的考虑从热物理上一致的意义上隐含地照顾了流动物理学中的复杂性,因此无需特殊的边界处理来解决诸如克努森悖论之类的现象。过渡态气流,否则将通过计算密集型分子模拟解决,在扩展的准连续谱框架内变得易于控制,而无需使用任何拟合参数。通过直接模拟蒙特卡洛(DSMC)计算和实验结果进行的严格比较支持了这种猜测,适用于等温压驱动的气流和高马赫数冲击波流经矩形微通道的情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号