...
首页> 外文期刊>Microfluidics and nanofluidics >Optimized design and fabrication of a microfluidic platform to study single cells and multicellular aggregates in 3D
【24h】

Optimized design and fabrication of a microfluidic platform to study single cells and multicellular aggregates in 3D

机译:优化设计和制造微流体平台,以研究3D中的单细胞和多细胞聚集体

获取原文
获取原文并翻译 | 示例
           

摘要

A microfluidic platform for cell motility analysis in a three-dimensional environment is presented. The microfluidic device is designed to study migration of both single cells and cell spheroids, in particular under spatially and temporally controlled chemical stimuli. A layout based on a central microchannel confined by micropillars and two lateral reservoirs was selected as the most effective. The microfluidics have an internal height of 350 mu m to accommodate cell spheroids of a considerable size. The chip is fabricated using well-established micromachining techniques, by obtaining the polydimethylsiloxane replica from a Si/SU-8 master. The chip is then bonded on a 170-mu m-thick microscope glass slide to allow high spatial resolution live microscopy. In order to allow the cost-effective and highly repeatable production of chips with high aspect ratio (5:1) micropillars, specific design and fabrication processes were optimized. This design permits spatial confinement of the gel where cells are grown, the creation of a stable gel-liquid interface and the formation of a diffusive gradient of a chemoattractant (>48 h). The chip accomplishes both the tasks of a microfluidic bioreactor system and a cell analysis platform avoiding critical handling of the sample. The experimental fluidic tests confirm the easy handling of the chip and in particular the effectiveness of the micropillars to separate the Matrigel T from the culture media. Experimental tests of (i) the stability of the gradient, (ii) the biocompatibility and (iii) the suitability for microscopy are presented.
机译:提出了在三维环境中进行细胞运动分析的微流控平台。该微流体装置被设计用于研究单个细胞和细胞球体的迁移,特别是在空间和时间控制的化学刺激下。选择基于由微柱和两个侧向储层约束的中央微通道的布局最为有效。微流体的内部高度为350微米,以容纳相当大的细胞球体。通过从Si / SU-8母版获得聚二甲基硅氧烷复制品,使用公认的微加工技术制造该芯片。然后将芯片粘合在170微米厚的显微镜载玻片上,以实现高空间分辨率的实时显微镜。为了允许具有高长宽比(5:1)微柱的芯片的经济高效且可重复的生产,对特定的设计和制造工艺进行了优化。这种设计可以在细胞生长的地方进行凝胶的空间限制,形成稳定的凝胶-液体界面,并形成趋化剂的扩散梯度(> 48小时)。该芯片既完成了微流生物反应器系统的任务,又完成了细胞分析平台,从而避免了对样品的严格处理。实验性流体测试证实了芯片的易于处理,特别是微柱将Matrigel T与培养基分离的有效性。介绍了(i)梯度稳定性,(ii)生物相容性和(iii)显微镜适用性的实验测试。

著录项

  • 来源
    《Microfluidics and nanofluidics》 |2017年第2期|29.1-29.14|共14页
  • 作者单位

    CNR IMEM, Parco Area Sci 37a, I-43124 Parma, Italy|Politecn Torino, Chilab Mat & Microsyst Lab, DISAT, Via Lungo Piazza Armi 6, I-10034 Turin, Italy;

    Candiolo Canc Inst FPO IRCCS, Str Prov 142, I-10060 Turin, Italy;

    Politecn Torino, Chilab Mat & Microsyst Lab, DISAT, Via Lungo Piazza Armi 6, I-10034 Turin, Italy;

    Politecn Torino, Chilab Mat & Microsyst Lab, DISAT, Via Lungo Piazza Armi 6, I-10034 Turin, Italy;

    Candiolo Canc Inst FPO IRCCS, Str Prov 142, I-10060 Turin, Italy|Univ Torino, Dept Oncol, Turin, Italy;

    Candiolo Canc Inst FPO IRCCS, Str Prov 142, I-10060 Turin, Italy|Univ Torino, Dept Oncol, Turin, Italy;

    Politecn Torino, Chilab Mat & Microsyst Lab, DISAT, Via Lungo Piazza Armi 6, I-10034 Turin, Italy;

    CNR IMEM, Parco Area Sci 37a, I-43124 Parma, Italy|Politecn Torino, Chilab Mat & Microsyst Lab, DISAT, Via Lungo Piazza Armi 6, I-10034 Turin, Italy;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    PDMS; SU-8 photolithography; 3D cell culture; Spheroids; Chemotaxis; Micropillars;

    机译:PDMS;SU-8光刻;3D细胞培养;球体;趋化性;微柱;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号