...
首页> 外文期刊>Metallurgical and Materials Transactions A >Deformation and fracture behavior of beams composed of aluminum foam core and ceramic Al2O3 under monolithic bending
【24h】

Deformation and fracture behavior of beams composed of aluminum foam core and ceramic Al2O3 under monolithic bending

机译:泡沫铝芯和陶瓷Al2 O3 组合梁在整体弯曲下的变形和断裂行为

获取原文
获取原文并翻译 | 示例
           

摘要

Deformation and fracture mechanisms of sandwich and multilayer beams composed of aluminum foam core and ceramic face sheets under four-point bending condition were investigated in situ by surface displacement analysis (SDA) software. The toughening mechanism of the beams was discussed and a model was given for the computation of the fracture energy of the beams. Beams containing foam core with 5-, 10-, and 20-mm thickness and Al2O3 face sheets of 0.5- and 1-mm thickness were prepared. The results show that collapse of the beams is by two basic modes, indentation (ID) and face plate failure (PF). The SDA results illustrated that indentation is localized compression on the portion of the beam adjacent to the loading rollers, where displacement and strain are at the maximum. In PF, the beam entirely bends. It is also found that before collapse of the beams with pure PF mode, the foam core undergoes uniform compressive deformation, which contributes most to the fracture energy of the beams. As for the beams with ID characteristic, the localized compressive deformation plays a key role rather than the uniform compressive deformation in the fracture energy of the beam. The total fracture energy W of a beam under bending condition is proposed as $$W = W_{UC} + W_{LC} + W_{CB} + W_{PF} $$ where W UC is the energy of uniform compressive deformation of the foam core, W LC is the energy of localized compression of the foam core and W CB and W PF are the bending fracture energy of the monolithic foam core and ceramic face sheet, respectively. For the beams with pure PF mode, W LC is zero. The estimated values of the fracture energy are in good agreement with the measured fracture energy of the beams.
机译:通过表面位移分析(SDA)软件,对泡沫铝芯和陶瓷面板组成的夹层和多层梁在四点弯曲条件下的变形和断裂机理进行了原位研究。讨论了梁的增韧机理,并给出了计算梁断裂能的模型。准备了包含5、10和20毫米厚度的泡沫芯以及0.5和1毫米厚度的Al2 O3 面板的梁。结果表明,梁的塌陷有两种基本模式,即压痕(ID)和面板破坏(PF)。 SDA结果表明,压痕是梁上与加载辊相邻的部分的局部压缩,其中位移和应变最大。在PF中,光束完全弯曲。还发现,在纯PF模式的梁塌陷之前,泡沫芯经历了均匀的压缩变形,这对梁的断裂能贡献最大。对于具有ID特性的梁,局部压缩变形在梁的断裂能中起着关键作用,而不是均匀的压缩变形。弯曲条件下梁的总断裂能W建议为$$ W = W_ {UC} + W_ {LC} + W_ {CB} + W_ {PF} $$,其中W UC 为泡沫芯的均匀压缩变形,W LC 是泡沫芯的局部压缩能,W CB 和W PF 是整体泡沫芯和陶瓷的弯曲断裂能面板。对于纯PF模式的光束,W LC 为零。断裂能的估计值与梁的测量断裂能非常吻合。

著录项

  • 来源
    《Metallurgical and Materials Transactions A》 |2005年第3期|771-783|共13页
  • 作者

    J. B. Sha; T. H. Yip;

  • 作者单位

    the High Temperature Materials Group National Institute for Materials Science 305-0047 Ibaraki Japan;

    the School of Materials Engineering Nanyang Technological University 639798 Singapore;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号