首页> 外文期刊>Metallurgical and Materials Transactions A >Characterization of Open Volume Regions in a Simulated Cu-Zr Metallic Glass
【24h】

Characterization of Open Volume Regions in a Simulated Cu-Zr Metallic Glass

机译:模拟的Cu-Zr金属玻璃中开放体积区域的表征

获取原文
获取原文并翻译 | 示例
           

摘要

Optimizing the structural reliability of bulk metallic glass (BMG) components demands a detailed understanding of the atomic structure of the glass, particularly the defects that control plastic flow. These defects are thought to be associated with regions of low atomic density, which facilitate the required diffusion-like atomic rearrangement processes. In the present article, the distribution of low-density regions in a simulated Cu-Zr glass is studied with two different techniques. Using a hard-sphere model, the interstitial volume distribution was obtained by constructing Voronoi polyhedra around each atom and inserting spheres into the unoccupied regions at the vertices. The volumes of touching spheres were summed and corrected for any overlap to obtain the size distribution of the unoccupied sites. The resulting distribution is in good agreement with Cohen and Turnbull’s free volume model and provides insight into how a single free volume site may be described. However, this model depends significantly on the somewhat arbitrary selection of the hard-sphere atomic radii and may not give a realistic indication of the shape or connectivity of the low atomic-density regions. Recent experimental studies of the open volume distribution using positron annihilation spectroscopy probe the electron and not the atomic density. We therefore propose a novel method to identify low-density regions from ab initio calculated radially averaged electron-density distributions, which allows a more physical and less ambiguous identification of low-density areas and, at the same time, connects atomic and electron distributions. Our results show that the qualitative volume distribution from the electron-density model agrees well with the hard-sphere model, while allowing a more physical quantitative analysis.
机译:要优化大块金属玻璃(BMG)组件的结构可靠性,需要对玻璃的原子结构,尤其是控制塑料流动的缺陷有详细的了解。这些缺陷被认为与低原子密度的区域有关,这促进了所需的类似扩散的原子重排过程。在本文中,使用两种不同的技术研究了模拟Cu-Zr玻璃中低密度区域的分布。使用硬球模型,通过在每个原子周围构造Voronoi多面体并将球体插入顶点的未占用区域中,获得间隙体积分布。对接触球体的体积求和并进行重叠校正,以获取未占用位置的大小分布。由此产生的分布与Cohen和Turnbull的免费交易量模型非常吻合,并深入了解了如何描述单个免费交易量站点。但是,该模型很大程度上取决于硬球原子半径的任意选择,并且可能无法给出低原子密度区域的形状或连通性的实际指示。使用正电子ni没光谱技术进行的开放体积分布的最新实验研究是探测电子而不是原子密度。因此,我们提出了一种从头算起的径向平均电子密度分布来识别低密度区域的新颖方法,该方法允许对低密度区域进行更物理,更不模糊的识别,同时连接原子和电子分布。我们的结果表明,电子密度模型的定性体积分布与硬球模型非常吻合,同时允许进行更多的物理定量分析。

著录项

  • 来源
    《Metallurgical and Materials Transactions A》 |2008年第8期|1779-1785|共7页
  • 作者单位

    Department of Materials Science and Engineering The Ohio State University Columbus OH 43210 USA;

    Department of Materials Science and Engineering The Ohio State University Columbus OH 43210 USA;

    Department of Materials Science and Engineering The Ohio State University Columbus OH 43210 USA;

    Department of Materials Science and Engineering The Ohio State University Columbus OH 43210 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号