首页> 外文期刊>Metallurgical and Materials Transactions A >Microstructure and Microtexture Formation of AZ91D Magnesium Alloys Solidified in a Static Magnetic Field
【24h】

Microstructure and Microtexture Formation of AZ91D Magnesium Alloys Solidified in a Static Magnetic Field

机译:在静磁场中凝固的AZ91D镁合金的组织和微观组织

获取原文
获取原文并翻译 | 示例
           

摘要

In the present study, we solidified AZ91D magnesium alloys in a static magnetic field with a magnetic flux density up to 10 Tesla (T). Three different regions can be identified in a solidified alloy, according to their microtexture and microstructure; these regions are: (a) region (A), the central region with equiaxed dendrites, (b) region (B), the transitional region with directional dendrites grown from an unmelted region, and (c) region (C), the edge region with cellular dendrites grown from the substrate of the container. No detectable difference can be discerned with regard to the influence of the magnetic field on the microstructure in region (A). However, the microtexture evolution in the region shows a strong dependence on the magnetic field and the preferential orientation formation is briefly elucidated. Special attention is focused on the orientation development of the directional dendrites in region (B) as a function of the magnetic flux density B 0, when the electron backscatter diffraction (EBSD) technique is employed. It is shown that the directional dendrites exhibit a random orientation distribution at B 0 < 5 T, while they have a unique orientation at B 0 ≥ 5 T. Microstructure observation indicates that the crystallographic orientation selection completes at the interface of the melt/unmelted regions. A theoretical analysis reveals that the competition between the magnetization energy and the anisotropic interfacial energy difference of the crystals controls the crystallographic orientation selection. For the microstructure and microtexture in region (C), heterogeneous nucleation takes place from the polycrystalline Al2O3 substrate and thus enables a random crystallographic orientation distribution. The short growth interval may not be sufficient for the preferred growth direction to be selected near the chilling area; this applies to the cellular dendrites grown from the substrate at all levels of the magnetic field.
机译:在本研究中,我们在磁通密度高达10特斯拉(T)的静磁场中固化了AZ91D镁合金。根据凝固组织的微观组织和微观结构,可以识别出三个不同的区域。这些区域是:(a)区域(A),具有等轴晶状体的中心区域,(b)区域(B),具有从未熔融区域生长的定向树状体的过渡区域,以及(c)区域(C),边缘该区域具有从容器的基底生长的细胞树突。关于磁场对区域(A)中微结构的影响,无法辨别出可检测的差异。但是,该区域的微观纹理演变显示出对磁场的强烈依赖性,并且简要阐明了优先取向的形成。当采用电子背散射衍射(EBSD)技术时,应特别注意区域(B)中有向树枝状晶体的取向发展与磁通密度B 0的关系。结果表明,定向枝晶在B 0 <5 T处表现出随机的取向分布,而在B 0 ≥5 T处具有唯一的取向。显微组织观察表明,结晶枝晶的选择在熔化/未熔化区域的界面。理论分析表明,晶体的磁化能与各向异性界面能差之间的竞争控制着晶体的取向选择。对于区域(C)的微观结构和微观组织,多晶Al2O3O3衬底发生了异质成核,从而实现了随机的晶体取向分布。较短的生长间隔可能不足以在冷却区域附近选择首选的生长方向。这适用于在所有水平的磁场下从基质生长的细胞树突。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号