首页> 外文期刊>Metallurgical and materials transactions. A, physical metallurgy and materials science >Moessbauer Spectroscopy Study of the Aging and Tempering of High Nitrogen Quenched Fe-N Alloys: Kinetics of Formation of Fe_(16)N_2 Nitride by Interstitial Ordering in Martensite
【24h】

Moessbauer Spectroscopy Study of the Aging and Tempering of High Nitrogen Quenched Fe-N Alloys: Kinetics of Formation of Fe_(16)N_2 Nitride by Interstitial Ordering in Martensite

机译:高氮淬火Fe-N合金的时效和回火的Moessbauer光谱研究:马氏体中间隙序形成Fe_(16)N_2氮化物的动力学

获取原文
获取原文并翻译 | 示例
           

摘要

The distribution of nitrogen atoms in austenite and during the different stages of aging and tempering of martensite is studied by Moessbauer spectroscopy, X-ray diffraction, and transmission electron microscopy (TEM). Transmission Moessbauer spectroscopy (TMS) and conversion electron Moessbauer spectroscopy (CEMS) are used for studying the austenite phase where the distribution of nitrogen atoms is found to depend on the nitriding method, gas nitriding in our case, or ion implantation. Conversion electron Moessbauer spectroscopy, which concerns a depth predominantly less than 200 nm, reveals a nitrogen atom distribution different from that found in the bulk by TMS. The identification and kinetics of the stages of aging and tempering of martensite are followed by TMS measurements, and the phase characterization is confirmed by X-ray diffraction and TEM. The major stages are the early ordering of nitrogen atoms, which leads to small coherent precipitates of α″-Fe_(16)N_2; the passage by thickening to semicoherent precipitates of α″-Fe_(16)N_2; the dissolution of α″-Fe_(16)N_2 with the concomitant formation of γ′-Fe_4N; and the decomposition of retained austenite by tempering. The three first stages correspond to activation energies of 95, 126, and 94 kJ/mole, respectively, consistent with the nitrogen diffusion for the first and third stages and the dislocation pipe diffusion of iron for the second.
机译:通过Moessbauer光谱,X射线衍射和透射电子显微镜(TEM)研究了奥氏体中以及马氏体时效和回火不同阶段中氮原子的分布。透射Moessbauer光谱(TMS)和转换电子Moessbauer光谱(CEMS)用于研究奥氏体相,其中发现氮原子的分布取决于氮化方法,本例中的气体氮化或离子注入。转换电子Moessbauer光谱主要涉及小于200 nm的深度,它揭示的氮原子分布与TMS在本体中发现的氮原子分布不同。通过TMS测量来确定马氏体时效和回火阶段的动力学,并通过X射线衍射和TEM证实其相表征。主要阶段是氮原子的早期排序,这导致α''-Fe_(16)N_2的小相干沉淀。通过增厚α” -Fe_(16)N_2半相干析出物而通过; α''-Fe_(16)N_2的溶解与γ'-Fe_4N的伴随形成;并通过回火分解残余奥氏体。前三个阶段分别对应于95、126和94 kJ / mole的活化能,这与第一阶段和第三阶段的氮扩散以及第二阶段的铁的位错管扩散一致。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号