...
首页> 外文期刊>Memetic Computing >A comparison between neural networks and k-nearest neighbours for blood cells taxonomy
【24h】

A comparison between neural networks and k-nearest neighbours for blood cells taxonomy

机译:神经网络与k近邻血细胞分类法的比较

获取原文
获取原文并翻译 | 示例
           

摘要

Constitutive properties of living cells are able to withstand physiological environment as well as mechanical stimuli occurring within and outside the body. Any deviation from these properties would undermine the physical integrity of the cells as well as their biological functions. Thus, a quantitative study in single cell mechanics needs to be conducted. In this paper we will examine fluid flow and Neo–Hookean deformation related to the rolling effect. A mechanical model to describe the cellular adhesion with detachment is here proposed. We develop a first finite element method (FEM) analysis, simulating blood cells attached on vessel wall. Restricting the interest on the contact surface and elaborating again the computational results, we develop an equivalent spring model. Our opinion is that the simulation notices deformation inhomogeneities, i.e., areas with different concentrations having different deformation values. This important observation should be connected with a specific form of the stored energy deformation. In this case, it loses the standard convexity to show a non-monotone deformation law. Consequently, we have more minima and the variational problem seems more difficult. Several numerical simulations have been carried out, involving a number of human cells with different mechanical properties. All the collected data have been subsequently used to train and test suitable soft computing models in order to classify the kind of cell. Obtained results assure good performances (4.7% of classification error) of the implemented classifier, with very interesting applications.
机译:活细胞的本构特性能够承受生理环境以及发生在体内和体外的机械刺激。这些特性的任何偏离都将破坏细胞的物理完整性及其生物学功能。因此,需要进行单细胞力学的定量研究。在本文中,我们将研究与滚动效应有关的流体流动和新霍克变形。在这里提出了一种机械模型来描述细胞粘附与分离。我们开发了第一个有限元方法(FEM)分析,模拟附着在血管壁上的血细胞。为了限制接触表面的兴趣并再次详细说明计算结果,我们开发了等效弹簧模型。我们的意见是,模拟注意到变形不均匀性,即浓度不同的区域具有不同的变形值。这个重要的观察结果应与存储能量变形的特定形式有关。在这种情况下,它将失去标准凸度以显示非单调变形定律。因此,我们有更多的最小值,变分问题似乎更加困难。已经进行了一些数值模拟,涉及许多具有不同机械特性的人体细胞。随后将所有收集的数据用于训练和测试合适的软计算模型,以对单元格的类型进行分类。获得的结果可确保实现的分类器具有良好的性能(分类误差的4.7%),并且具有非常有趣的应用程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号