...
首页> 外文期刊>Mechanics of materials >An investigation of fatigue crack nucleation and growth in a Ti―6Al―4V/TiB in situ composite
【24h】

An investigation of fatigue crack nucleation and growth in a Ti―6Al―4V/TiB in situ composite

机译:Ti-6Al-4V / TiB原位复合材料疲劳裂纹成核与扩展的研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This paper presents the results of an experimental study of fatigue crack nucleation and growth in a Ti―6Al―4V/TiB in situ whisker-reinforced composite. The onset of crack nucleation is shown to correspond to ~20% of the total life at a stress range of 480 MPa. This is associated with transverse cracking across TiB whiskers, and interfacial decohesion between the TiB whiskers and the Ti~6Al-4V matrix. Subsequent cracking occurs by the formation of multiple cracks across the elongated α grains. These cracks are retarded initially by the β phase. However, subsequent fatigue damage results in transgranular crack growth across α and β phases prior to the onset of catastrophic failure. The long fatigue crack growth rates in the Paris regime in the Ti―6Al―4V/TiB composite are comparable to those of Ti 6A1-4V processed under nominally identical conditions. However, the fatigue crack growth rates in the composite are faster than those in the matrix alloy at lower ΔK values. Cyclic deformation of the composite is associated with strain softening, presumably as a result of progressive interfacial decohesion around the TiB whiskers early in the fatigue deformation process. The implications of the results are assessed for potential structural applications of the Ti―6Al―4V/TiB composite.
机译:本文介绍了原位晶须增强Ti―6Al―4V / TiB疲劳裂纹成核和生长的实验研究结果。结果表明,在480 MPa的应力范围内,裂纹成核的发生相当于总寿命的约20%。这与TiB晶须之间的横向开裂以及TiB晶须与Ti〜6Al-4V基体之间的界面脱粘有关。随后的裂纹是通过在细长的α晶粒上形成多个裂纹而发生的。这些裂纹最初被β相阻止。但是,随后的疲劳损伤会导致灾难性破坏发生之前,α和β相中的跨晶裂纹扩展。在Ti―6Al―4V / TiB复合材料中,巴黎地区的长疲劳裂纹扩展速率与在名义上相同的条件下加工的Ti 6A1-4V相当。但是,在较低的ΔK值下,复合材料中的疲劳裂纹扩展速率比基体合金中的疲劳裂纹扩展速率快。复合材料的循环变形与应变软化有关,大概是由于在疲劳变形过程的早期,TiB晶须周围逐渐进行了界面剥离。对结果的影响进行了评估,以评估Ti-6Al-4V / TiB复合材料的潜在结构应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号