首页> 外文期刊>Mechanics of materials >The influence of dispersity in geometric structure on the stability of cellular solids
【24h】

The influence of dispersity in geometric structure on the stability of cellular solids

机译:几何结构中的分散度对多孔固体稳定性的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Geometric structures in cellular solids span the spectrum from perfectly periodic to strictly random. Depending on the degree of disorder at the cellular-scale, the corresponding continuum-scale mechanical response can admit instabilities or can remain stable for the entire range of compressive deformations. In the present work, the response of cellular materials to quasi-static uni-axial compression is investigated. The underlying geometric structures in these materials are allowed to range from highly ordered to highly disordered, and the corresponding transition from unstable to stable mechanical response is explored. A stochastic constitutive model is developed and used for this purpose. Model development begins with an established cellular-scale mechanical response description, but this cellular-scale model is generalized to accommodate finite strain. A continuum-scale constitutive model is established by averaging the cellular-scale model over an ensemble of foam cells, and stochastic variation in cellular-scale geometric structure and material properties is considered through the use of probability density functions for the associated model parameters. Results show that dispersity in geometric structure has little to no effect on the initial elastic properties of the cellular materials under investigation. For deformations occurring prior to any occurrence of instability, however, increasing dispersity is accompanied by decreasing stiffness, an increase in critical strain, and a decrease in the extent of localized deformation. Most notably, materials with the highest degrees of dispersity in their cellular structures exhibit mechanical response that remains stable for the entire range of compressive deformations, demonstrating a general stabilizing effect of dispersity in geometric structure on the continuum-scale mechanical response of cellular solids.
机译:细胞固体中的几何结构的光谱范围从完全周期性到严格随机。取决于细胞尺度的无序程度,相应的连续尺度尺度的机械反应可以允许不稳定性,或者可以在整个压缩变形范围内保持稳定。在目前的工作中,研究了蜂窝材料对准静态单轴压缩的响应。这些材料的基本几何结构允许从高度有序到高度无序变化,并探索了从不稳定的机械响应到稳定的机械响应的相应过渡。随机本构模型已开发并用于此目的。模型的开发从建立的细胞尺度机械响应描述开始,但是该细胞尺度模型被概括为适应有限应变。通过对整个泡沫泡孔中的细胞尺度模型求平均,可以建立连续尺度尺度的本构模型,并通过将概率密度函数用于关联的模型参数来考虑细胞尺度几何结构和材料特性的随机变化。结果表明,几何结构中的分散性对所研究的多孔材料的初始弹性几乎没有影响。然而,对于在任何不稳定性发生之前发生的变形,增加的分散性伴随着刚度的降低,临界应变的增加以及局部变形程度的降低。最值得注意的是,在其孔结构中具有最高分散度的材料表现出在整个压缩变形范围内都保持稳定的机械响应,从而证明了几何结构中的分散度对孔固体的连续尺度机械响应具有总体稳定作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号