首页> 外文期刊>Mechanics of materials >Constitutive modeling of nitrogen-alloyed austenitic stainless steel at low and high strain rates and temperatures
【24h】

Constitutive modeling of nitrogen-alloyed austenitic stainless steel at low and high strain rates and temperatures

机译:氮合金奥氏体不锈钢在低应变率和高应变率及温度下的本构模型

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, microstructures-based constitutive relations are introduced to simulate the thermo-mechanical response of two nitrogen-alloyed austenitic stainless steels; Nitron-ic-50 and Uranus-B66, under static and dynamic loadings. The simulation of the flow stress is developed based on a combined approach of two different principal mechanisms; the cutting of dislocation forests and the overcoming of Peierls-Nabarro barriers. The experimental observations for Nitronic-50 and Uranus-B66 conducted by Guo and Nemat-Nasser (2006) and Frechard et al. (2008), respectively, over a wide range of temperatures and strain rates are also utilized in understanding the underlying deformation mechanisms. Results for the two stainless steels reveal that both the initial yielding and strain hardening are strongly dependent on the coupling effect of temperatures and strain rates. The methodology of obtaining the material parameters and their physical interpretation are presented thoroughly. The present model predicts results that compare very well with the experimental data for both stainless steels at initial temperature range of 77-1000 K and strain rates between 0.001 and 8000 s~(-1). The effect of the physical quantities at the micro-structures on the overall flow stress is also investigated. The evolution of dislocation density along with the initial dislocation density contribution plays a crucial role in determining the thermal stresses. It was observed that the thermal yield stress component is more affected by the presence of initial dislocations and decreases with the increase of the originated (initial) dislocation density.
机译:本文介绍了基于微观结构的本构关系,以模拟两种氮合金奥氏体不锈钢的热机械响应。静态和动态载荷下的Nitron-ic-50和天王星-B66。流动应力的模拟是基于两种不同主要机制的组合方法开发的。砍伐错位森林和克服Peierls-Nabarro障碍。 Guo和Nemat-Nasser(2006)和Frechard等人对Nitronic-50和Uranus-B66进行的实验观察。 (2008年),分别在很宽的温度范围内和应变率也被用来理解潜在的变形机理。两种不锈钢的结果表明,初始屈服和应变硬化都强烈取决于温度和应变率的耦合效应。详尽介绍了获得材料参数的方法及其物理解释。本模型预测的结果与两种不锈钢在初始温度范围77-1000 K和应变率0.001至8000 s〜(-1)时的实验数据非常吻合。还研究了微观结构上的物理量对整体流动应力的影响。位错密度的演变以及初始位错密度的贡献在确定热应力中起着至关重要的作用。可以观察到,热屈服应力分量受初始位错的影响更大,并且随着原始(初始)位错密度的增加而降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号