首页> 外文期刊>Mechanics of materials >Some issues concerning the use of a single, material specific length scale parameter in theories of higher order strain gradient plasticity
【24h】

Some issues concerning the use of a single, material specific length scale parameter in theories of higher order strain gradient plasticity

机译:有关使用单一材料特定长度比例在高阶应变梯度可塑性中的使用的一些问题

获取原文
获取原文并翻译 | 示例
       

摘要

Higher order strain gradient plasticity theories extend conventional ones with a view to explain the observed elevation of plastic flow stress in micron-sized structures. The essential elements of this modifications are the definition of a measure of plastic strain gradients, introduction of a conjugate higher order stress and introduction of one or more length scale parameters. We adopt a particular elasto-viscoplastic version of the higher order strain gradient theory based on a single scalar length scale parameter, formulate a large deformation based Finite Element model capable of handling strain gradients and higher order boundary conditions and simulate for three different materials, two sets of experiments where size effects manifest. The experiments differ in the level of plasticity that is induced during deformation - ranging from the order of the yield strain to approximately ten times its value. The materials, namely Cu, Al and Ni, have grain sizes that differ widely. We determine the scalar length scale parameter by demanding that the simulations match the experimental load deformation responses closely. The results indicate that single, scalar length scale parameter based higher order strain gradient theories cannot describe experimental observations across a wide range of geometries, boundary conditions, and plastic strain levels. The length scale is not intrinsic to the material but depends on the level of plastic strain induced by the deformation and also possibly on the number of grains involved in the deformation.
机译:高阶应变梯度塑性理论延伸常规型号,以解释微米尺寸结构中观察到的塑性流应力的升高。该修改的基本要素是塑性应变梯度测量的定义,引入缀合物高阶应力并引入一个或多个长度参数。我们采用特定的弹性粘性版本的高阶应变梯度理论,基于单个标量长度比例参数,配制基于大的变形的有限元模型,能够处理应变梯度和更高阶边界条件,并模拟三种不同的材料,两个尺寸效果明显的实验集。实验在变形过程中诱导的可塑性水平 - 从产率应变的顺序达到约10倍。材料,即Cu,Al和Ni,具有广泛不同的晶粒尺寸。我们通过要求仿真符合实验载荷变形响应,确定标量长度参数。结果表明,基于单标量长度参数的高阶应变梯度理论不能描述跨各种几何形状,边界条件和塑性应变水平的实验观察。长度尺度不是材料内在的内在,但取决于变形诱导的塑性菌株的水平,也可能在变形中涉及的谷物的数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号