...
首页> 外文期刊>Mechanics of materials >A numerical study on the in-plane dynamic crushing of self-similar hierarchical honeycombs
【24h】

A numerical study on the in-plane dynamic crushing of self-similar hierarchical honeycombs

机译:自相似分级蜂窝平面内动态破碎的数值研究

获取原文
获取原文并翻译 | 示例

摘要

Rather than restating the quasi-static mechanical characteristics of hierarchical honeycombs, this paper aims to explore the coupling effect between self-similar hierarchical characteristics and dynamic mechanical properties. Systematic simulations of hierarchical honeycombs subject to in-plane impact loading indicate that the introduction of a self-similar hierarchy does indeed enrich the types of local deformation bands. Appropriately increasing the hierarchical structural parameter of the honeycomb has the same effect as increasing the impact velocity, which leads to the formation of a localized "I"-shaped deformation band, and hence improves the energy absorption capability. However, deformation patterns can also be categorized into quasi-static, transition, and dynamic modes. The critical velocities at which deformation patterns transit can be obtained from the classification map. By using this method, it is possible to analyze the stress-strain curves of hierarchical honeycombs at the impact end and the plateau stresses in association with the deformation profiles. The following analysis of relative plateau stress further demonstrates that self-similar hierarchical characteristics are favorable for improving the overall performance of honeycombs. When the impact velocity is uncertain, the hierarchical honeycomb has superior energy absorption capability when the hierarchical structural parameter ranges from 0.3 to 0.4. Through the observation and analysis of the results from many cases, it is proven that the hierarchical structural parameter and the impact velocity affect the densification strain simultaneously. The empirical equations of dynamic densification strains for hierarchical honeycombs under different deformation patterns are derived by using least-square fitting.
机译:与其重述分层蜂窝的准静态力学特性,不如研究自相似分层特性与动态力学特性之间的耦合效应。受到平面内冲击载荷作用的分层蜂窝的系统仿真表明,自相似分层的引入确实确实丰富了局部变形带的类型。适当地增加蜂窝的分级结构参数具有与提高冲击速度相同的效果,这导致形成局部的“ I”形变形带,从而提高了能量吸收能力。但是,变形模式也可以分为准静态,过渡和动态模式。可以从分类图获得变形模式转变的临界速度。通过使用这种方法,可以分析冲击端的分层蜂窝的应力-应变曲线以及与变形轮廓相关的平台应力。下面的相对平稳应力分析进一步证明,自相似的分层特性有利于改善蜂窝的总体性能。当冲击速度不确定时,当分级结构参数范围为0.3至0.4时,分级蜂窝具有更好的能量吸收能力。通过对多种情况结果的观察和分析,证明了分层结构参数和冲击速度同时影响致密化应变。通过最小二乘拟合,得出了不同变形模式下分层蜂窝动态密实应变的经验方程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号