首页> 外文期刊>Mechanics of materials >Ab initio aided strain gradient elasticity theory in prediction of nanocomponent fracture
【24h】

Ab initio aided strain gradient elasticity theory in prediction of nanocomponent fracture

机译:从头开始的应变梯度弹性理论在纳米组分断裂预测中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

The aim of the paper is to address fracture problems in nanoscale-sized cracked components using a simplified form of the strain gradient elasticity theory aided by ab initio calculations. Quantification of the material length scale parameter l(1) of the simplified form of the strain gradient elasticity theory plays a key role in the analysis. The parameter l(1) is identified for silicon and tungsten single crystals using first principles calculations. Specifically, the parameter l(1) is extracted from phonon-dispersions generated by ab-initio calculations and, for comparison, by adjusting the analytical strain gradient elasticity theory solution for the displacement field near the screw dislocation with the ab-initio calculations of this field. The obtained results are further used in the strain gradient elasticity modeling of crack stability in nano-panels made of silicon and tungsten single crystals, where due to size effects and nonlocal material point interactions the classical linear fracture mechanics breaks down. The cusp-like crack tip opening profiles determined by the gradient elasticity theory and a hybrid atomistic approach at the moment of nano-panels fracture revealed a very good mutual agreement.
机译:本文的目的是借助应变梯度弹性理论的简化形式(从头算)来解决纳米级裂纹组件中的断裂问题。应变梯度弹性理论简化形式的材料长度尺度参数l(1)的量化在分析中起关键作用。使用第一原理计算为硅和钨单晶确定参数l(1)。具体而言,从由ab-initio计算产生的声子色散中提取参数l(1),并且为了进行比较,通过对此的ab-initio计算,通过调整螺杆位错附近位移场的解析应变梯度弹性理论解进行比较。领域。所得结果进一步用于由硅和钨单晶制成的纳米面板的裂纹稳定性的应变梯度弹性建模中,其中由于尺寸效应和非局部材料点相互作用,经典的线性断裂力学失效。由梯度弹性理论和混合原子方法在纳米面板断裂时确定的尖状裂纹尖端开口轮廓显示出非常好的相互一致。

著录项

  • 来源
    《Mechanics of materials》 |2019年第9期|103074.1-103074.10|共10页
  • 作者单位

    Brno Univ Technol, Fac Mech Engn, Tech 2, Brno 61669, Czech Republic|Brno Univ Technol, Cent European Inst Technol CEITEC, Tech 2, Brno 61669, Czech Republic;

    Brno Univ Technol, Fac Mech Engn, Tech 2, Brno 61669, Czech Republic|Brno Univ Technol, Cent European Inst Technol CEITEC, Tech 2, Brno 61669, Czech Republic;

    Brno Univ Technol, Fac Mech Engn, Tech 2, Brno 61669, Czech Republic|Brno Univ Technol, Cent European Inst Technol CEITEC, Tech 2, Brno 61669, Czech Republic;

    Inst Phys Mat ASCR, Zizkova 22, Brno 61662, Czech Republic;

    Brno Univ Technol, Fac Mech Engn, Tech 2, Brno 61669, Czech Republic|Brno Univ Technol, Cent European Inst Technol CEITEC, Tech 2, Brno 61669, Czech Republic;

    Brno Univ Technol, Cent European Inst Technol CEITEC, Tech 2, Brno 61669, Czech Republic;

    Brno Univ Technol, Fac Mech Engn, Tech 2, Brno 61669, Czech Republic|Brno Univ Technol, Cent European Inst Technol CEITEC, Tech 2, Brno 61669, Czech Republic;

    Brno Univ Technol, Fac Mech Engn, Tech 2, Brno 61669, Czech Republic|Brno Univ Technol, Cent European Inst Technol CEITEC, Tech 2, Brno 61669, Czech Republic;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fracture nanomechanics; Strain gradient elasticity; DFT; FEM; Size dependent phenomena;

    机译:断裂纳米力学;应变梯度弹性;DFT;FEM;尺寸依赖现象;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号