...
首页> 外文期刊>Mechanical systems and signal processing >Obstruction-invariant occupant localization using footstep-induced structural vibrations
【24h】

Obstruction-invariant occupant localization using footstep-induced structural vibrations

机译:使用脚步诱导的结构振动阻碍不变的乘员本地化

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we characterize the effects of obstructions on footstep-induced floor vibrations to enable obstruction-invariant indoor occupant localization. Occupant localization is important in smart building applications such as smart healthcare and energy management. Maintenance and installment requirements limit the application of current sensing approaches (e.g., mobile-based, RF-based, and pressure-based sensing) in real-life applications. To overcome these limitations, prior work has utilized footstep-induced structural vibrations for occupant localization. The main intuition behind these approaches is that the footstep-induced floor vibration waves take different amounts of time to arrive at different sensors. These Time-Differences-of-Arrival (TDoA) can then be leveraged to locate the footstep by assuming similar velocities between the footstep and various sensor locations. This assumption makes these approaches suitable for open areas; however, real buildings have various types of obstructions (e.g., walls, furniture, etc.) which affect wave propagation velocities and hence significantly reduce localization accuracy. Therefore, the prior work requires unobstructed paths between footsteps and sensors for accurate occupant localization, which increases the sensing density requirement and thus, instrumentation and maintenance costs. We have observed that the obstruction mass is one of the key factors in affecting the wave propagation velocity and reducing the localization accuracy. Therefore, to overcome the obstruction challenge, we localize footsteps by considering different velocities between the footsteps and sensors depending on the existence and mass of obstruction on the wave path. Specifically, we (1) detect and estimate the mass of the obstruction by characterizing the wave attenuation rate, (2) use this estimated mass to find the propagation velocities for localization by modeling the velocity-mass relationship through the lamb wave characteristics, and (3) introduce a non-isotropic multilateration approach which robustly leverages these propagation velocities to locate the footsteps (and the occupants). In field experiments, we achieved average localization error of 0.61 meters, which is (1) the same as the average localization error when there is no obstruction and (2) 1.6X improvement compared to the baseline approach.
机译:在本文中,我们表征了障碍物对脚步诱导的地板振动的影响,以实现障碍不变的室内乘员本地化。占用本地化在智能建筑应用中非常重要,如智能医疗保健和能源管理。维护和分期付款要求限制在现实寿命应用中的电流检测方法(例如,基于移动的,基于RF和基于压力的感测)的应用。为了克服这些限制,前工作已经利用了用于占用本地化的脚步诱导的结构振动。这些方法背后的主要直觉是脚步诱导的地板振动波采取不同的时间来到达不同的传感器。然后可以利用这些时间差异(TDOA)来通过假设脚步和各种传感器位置之间的类似速度来定位脚步。这种假设使这些方法适合开放区域;然而,真正的建筑物具有影响波传播速度的各种类型的障碍物(例如,墙壁,家具等),从而显着降低了定位精度。因此,前进的工作需要脚步和传感器之间的无阻碍路径,用于准确乘员定位,从而增加了感测密度要求,因此,仪器和维护成本。我们观察到阻塞物质是影响波传播速度和降低定位精度的关键因素之一。因此,为了克服障碍挑战,我们通过考虑脚步和传感器之间的不同速度来定位脚步声,这取决于波路路径上的阻​​塞的存在和质量。具体地,我们(1)通过表征波衰减率来检测和估计阻塞的质量,(2)使用该估计的质量来通过通过羔羊波特性建模速度质量关系来找到定位的传播速度,( 3)引入非各向同性多边方法,该方法强大地利用这些传播速度来定位脚步(和乘员)。在现场实验中,我们实现了0.61米的平均定位误差,这是(1)与平均本地化误差相同,当没有阻塞和(2)比较与基线方法相比的1.6倍改善。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号