首页> 外文期刊>Mechanical systems and signal processing >New inverse wavelet transform method with broad application in dynamics
【24h】

New inverse wavelet transform method with broad application in dynamics

机译:具有广泛应用动态的新逆小波变换方法

获取原文
获取原文并翻译 | 示例
           

摘要

Extracting multi-scale models from system identification of stationary or nonstationary measured signals (e.g., time series) is of great importance in engineering and the applied sciences. We propose a new computational method for harmonic analysis and decomposi-tion of signals based on the inverse wavelet transform and demonstrate its efficacy in diverse areas in dynamics. The wavelet transform is a linear transformation of a signal measured in the temporal/spatial domain to the time-frequency/space-wavenumber domain and applies to stationary and nonstationary measurements. The new method is based on a numerical inverse wavelet transform and yields decomposition of the measured signal in terms of its dominant harmonic components. First, we formulate the analytical continuous inverse wavelet transform in a way that is suitable for computational imple-mentation. Then, taking as example a general measured signal in the time domain, (i) we numerically compute its numerical wavelet transform spectrum, (ii) define a set of "harmonic regions" in the wavelet spectrum containing the dominant harmonics to be inverted and studied, and (iii) by numerically inverse wavelet transforming each of the har-monic regions separately, obtain the respective decomposed harmonics in the time domain. Note that, by construction, the superposition of all decomposed harmonics recon-structs the original signal. Next, we demonstrate the efficacy of the method with some examples. We start with an artificial signal with prescribed harmonic components to high-light the method and its accuracy. Then, we show applicability of the method to system identification, by applying it to the modal analysis of a system of linearly coupled oscilla-tors with closely spaced modes. Lastly, we show how the new method enables quantifica-tion of the energy captured by each of the decomposed components (harmonics) in the response of a strongly nonlinear system. To this end, a single degree of freedom geometri-cally nonlinear oscillator is considered, and the method is used to quantify nonlinear energy "scattering" in its frequency domain. These examples hint at the broad applicability of the new method to diverse areas of signal processing and dynamics, including discrete and continuous dynamical systems with strongly (and even non-smooth) nonlinearities.
机译:从系统识别中提取多尺度模型(例如,时间序列)在工程和应用的科学方面具有重要意义。我们提出了一种基于逆小波变换的谐波分析和分解信号的新计算方法,并在动态中的不同区域中展示其功效。小波变换是在时间/空间域中测量的信号的线性变换到时频/空间波数域,并且适用于静止和非间断测量。该方法基于数​​值逆小波变换,并在其主导的谐波分量方面产生测量信号的分解。首先,我们以适合于计算实施方式的方式制定分析连续逆小波变换。然后,用作时域中的一般测量信号,(i)我们在数值上计算其数值小波变换谱,(ii)在包含倒置和研究的主谐波中的小波频谱中定义一组“谐波区域” (III)通过单独转换每个Har-Monic区域的数值逆小波,在时域中获得各个分解的谐波。注意,通过施工,所有分解谐波的叠加重构原始信号。接下来,我们证明了方法与一些例子的功效。我们从具有规定的谐波元件的人工信号开始,以高光的方法及其精度。然后,我们通过将方法应用于具有紧密间隔模式的线性耦合的振荡器系统的模态分析来显示该方法的适用性。最后,我们展示了新方法如何在强烈非线性系统的响应中通过每个分解的组件(谐波)捕获的能量的量化。为此,考虑了单一自由度的自由度非线性振荡器,并且该方法用于量化其频域中的非线性能量“散射”。这些示例提示了新方法对信号处理和动态区域不同的广泛适用性,包括具有强烈(甚至非平滑)非线性的离散和连续的动态系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号