首页> 外文期刊>Materials science & engineering >Surface engineering of spongy bacterial cellulose via constructing crossed groove/column micropattern by low-energy CO_2 laser photolithography toward scar-free wound healing
【24h】

Surface engineering of spongy bacterial cellulose via constructing crossed groove/column micropattern by low-energy CO_2 laser photolithography toward scar-free wound healing

机译:通过构造横孔/柱微图示的海绵细菌纤维素的表面工程,低能量CO_2激光光刻朝向无疤痕伤口愈合

获取原文
获取原文并翻译 | 示例
           

摘要

Bacterial cellulose (BC) is a bio-derived polymer, and it has been considered as an excellent candidate material for tissue engineering. In this study, a crossed groove/column micropattern was constructed on spongy, porous BC using low-energy CO2 laser photolithography. Applying the targeted immobilization of a tetrapeptide consisting of Arginine-Glycine-Aspartic acid-Serine (H-Arg-Gly-Asp-Ser-OH, RGDS) as a fibronectin onto the column platform surface, the resulting micropatterned BC (RGDS-MPBC) exhibited dual affinities to fibroblasts and collagen. Material characterization of RGDS-MPBC revealed that the micropattern was built by the column part with size of similar to 100 x 100 mu m wide and similar to 100 mu m deep, and the groove part with size of similar to 150 mu m wide. Hydrating the MPBC did not result in the collapse of the integrity of the micropattern, suggesting its potential application in a highly hydrated wound environment. Cell culture assays revealed that the RGDS-MPBC exhibited an improved cytotoxicity to mouse fibroblasts L929, as compared to the pristine BC. Meanwhile, it was observed that the RGDS-MPBC was able to guide the ordered aggregation of human skin fibroblast (HSF) cells on the column platform surface, and no HSF cells were found in the groove channels. Over time, it was found that a dense network of collagen was gradually established across the groove channels. Furthermore, the in-vivo animal study preliminarily demonstrated the scar-free healing potential of the micropatterned BC materials. Therefore, this RGDS-MPBC material exhibited its advantages in guiding cell migration and collagen distribution, which could present a prospect in the establishment of "basket-woven" organization of collagen in normal skin tissue against the formation of dense, parallel aggregation of collagen fibers in scar tissue toward scar-free wound healing outcome.
机译:细菌纤维素(BC)是生物衍生的聚合物,并且已被认为是用于组织工程的优异候选材料。在该研究中,使用低能量CO2激光光刻在海绵状,多孔BC上构建交叉的凹槽/柱微图案。将由精氨酸 - 甘氨酸天冬氨酸 - 丝氨酸(H-Arg-Gly-ASP-Ser-OH,RGDS)组成的四肽固定化作为纤连蛋白的纤连蛋白,所得到的MictioPatterned BC(RGDS-MPBC)为成纤维细胞和胶原蛋白表达了双重亲和力。 RGDS-MPBC的材料表征揭示了MicroPattern由柱部构成,尺寸与100×100μm宽,类似于100μm深的槽,槽部的宽度相似宽到150μm宽。保湿MPBC不会导致微图案的完整性崩溃,这表明其在高度水合伤口环境中的潜在应用。与原始BC相比,细胞培养测定显示RGDS-MPBC对小鼠成纤维细胞L929表现出改进的细胞毒性。同时,观察到RGDS-MPBC能够指导柱平台表面上的人体皮肤成纤维细胞(HSF)细胞的有序聚集,并且在凹槽通道中没有发现HSF细胞。随着时间的推移,发现在沟槽通道上逐渐建立了胶原的密集网络。此外,体内动物研究初步证明了微明的BC材料的无疤痕愈合潜力。因此,该RGDS-MPBC材料在引导细胞迁移和胶原蛋白分布方面表现出具有胶原蛋白在正常皮肤组织中的胶原蛋白组织的前景,以反对形成胶原纤维的致密,并行聚集的胶原蛋白在疤痕组织朝向无疤痕伤口愈合结果。

著录项

  • 来源
    《Materials science & engineering》 |2019年第6期|333-343|共11页
  • 作者单位

    Chinese Acad Sci Shenzhen Inst Adv Technol Inst Biomed & Biotechnol Ctr Human Tissue & Organs Degenerat Shenzhen 518055 Guangdong Peoples R China|Chinese Acad Sci Shenzhen Inst Adv Technol Inst Biomed & Biotechnol Shenzhen Key Lab Marine Biomed Mat Shenzhen 518055 Guangdong Peoples R China|Texas Tech Univ Dept Plant & Soil Sci Fiber & Biopolymer Res Inst Lubbock TX 79403 USA;

    Chinese Acad Sci Shenzhen Inst Adv Technol Inst Biomed & Biotechnol Ctr Human Tissue & Organs Degenerat Shenzhen 518055 Guangdong Peoples R China|Chinese Acad Sci Shenzhen Inst Adv Technol Inst Biomed & Biotechnol Shenzhen Key Lab Marine Biomed Mat Shenzhen 518055 Guangdong Peoples R China|Shanxi Med Univ Sch & Hosp Stomatol Taiyuan 030001 Shanxi Peoples R China;

    Chinese Acad Sci Shenzhen Inst Adv Technol Inst Biomed & Biotechnol Ctr Human Tissue & Organs Degenerat Shenzhen 518055 Guangdong Peoples R China|Chinese Acad Sci Shenzhen Inst Adv Technol Inst Biomed & Biotechnol Shenzhen Key Lab Marine Biomed Mat Shenzhen 518055 Guangdong Peoples R China;

    Chinese Acad Sci Shenzhen Inst Adv Technol Inst Biomed & Biotechnol Ctr Human Tissue & Organs Degenerat Shenzhen 518055 Guangdong Peoples R China|Chinese Acad Sci Shenzhen Inst Adv Technol Inst Biomed & Biotechnol Shenzhen Key Lab Marine Biomed Mat Shenzhen 518055 Guangdong Peoples R China;

    Shanxi Med Univ Sch & Hosp Stomatol Taiyuan 030001 Shanxi Peoples R China;

    Texas Tech Univ Dept Plant & Soil Sci Fiber & Biopolymer Res Inst Lubbock TX 79403 USA;

    Chinese Acad Sci Shenzhen Inst Adv Technol Inst Biomed & Biotechnol Ctr Human Tissue & Organs Degenerat Shenzhen 518055 Guangdong Peoples R China|Chinese Acad Sci Shenzhen Inst Adv Technol Inst Biomed & Biotechnol Shenzhen Key Lab Marine Biomed Mat Shenzhen 518055 Guangdong Peoples R China;

    Chinese Acad Sci Shenzhen Inst Adv Technol Inst Biomed & Biotechnol Ctr Human Tissue & Organs Degenerat Shenzhen 518055 Guangdong Peoples R China|Chinese Acad Sci Shenzhen Inst Adv Technol Inst Biomed & Biotechnol Shenzhen Key Lab Marine Biomed Mat Shenzhen 518055 Guangdong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Photolithography; Groove/column micropattem; CO2 laser; Fibronectin immobilization; Bacterial cellulose;

    机译:光刻;沟槽/柱微球;CO2激光;纤连蛋白固定化;细菌纤维素;

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号