首页> 外文期刊>Materials Science and Engineering >Hierarchically activated deformation mechanisms to form ultra-fine grain microstructure in carbon containing FeMnCoCr twinning induced plasticity high entropy alloy
【24h】

Hierarchically activated deformation mechanisms to form ultra-fine grain microstructure in carbon containing FeMnCoCr twinning induced plasticity high entropy alloy

机译:分层激活的变形机制,形成含碳含有毫花孪晶诱导塑性高熵合金的碳上的超细晶粒微观结构

获取原文
获取原文并翻译 | 示例
           

摘要

Nanotructural evolution and grain refinement leading to heterogeneous bimodal structure were investigated during thermomechanical processing in carbon-containing FeMnCoCr twinning induced plasticity (TWIP) high-entropy alloy (HEA). The homogenized single-phase face-centered cubic alloy with the stacking fault energy of 19.4 ± 2 mJ m~(-2) was cold rolled up to thickness reduction of 84 % and annealed at 850 °C. Planar slip with profuse nanoscale deformation twinning was the dominant deformation feature at low rolling reduction (32 %). The heterogeneous structure could be obtained through subdivision of microstructure, continuous dynamic recrystallization and static recrystallization described as follows: (i) Hierarchical mechanical twinning, (ⅱ) Interaction of twin-matrix (T/M) lamellae with shear-bands and (ⅲ) Continuous dynamic recrystallization (CDRX) within the strain-induced boundaries (SIBs), (ⅳ) Subsequent static recrystallization of the region with twin-matrix (T/M) lamellae and shear-bands. The strength and ductility enhancement during deformation was attributed to the hierarchy of microstructural evolution consisting of TWIP and microband-induced plasticity (MBIP). The heterogeneous bimodal structure composed of ultra-fine grains and larger grains with an average grain size of 0.5 μm and 3 μm respectively was achieved by post-rolling (84 %) annealing at 850 °C. Favorable strength-ductility combination with the ultimate tensile strength of 840 MPa and elongation of ~88 % was achieved by formation of heterogeneous bimodal microstructure through thermomechanical processing.
机译:在含碳紫杉族孪晶诱导可塑性(TWIP)高熵合金(HEA)的热机械加工过程中研究了导致异质双峰结构的纳米结构演化和晶粒细化。具有19.4±2 MJ M〜(-2)的堆叠故障能量的均匀单相面对的立方合金冷轧至厚度降低84%,并在850℃下退火。具有丰富的纳米尺度变形孪晶的平面滑移是低轧制减少(32%)处的主要变形特征。通过细胞结构的细分,连续的动态再结晶和静态重结晶,如下所述,可以获得异质结构:(i)双基质(T / m)薄膜与剪切带的相互作用,(Ⅱ)应变诱导的边界(SIBS)内连续的动态再结晶(CDRX),(ⅳ)随后用双基质(T / M)薄片和剪切带的区域的静态再结晶。变形期间的强度和延展性增强归因于由Twip和Microband诱导的塑性(MBIP)组成的微观结构演化的层次。通过在850℃下的滚动(84%)退火,通过在850℃下退火来实现由超细晶粒和平均晶粒尺寸和3μm的较大晶粒组成的异质双峰结构。通过热机械加工形成非均相双峰微观结构,实现了840MPa的极限拉伸强度和〜88%伸长的强度 - 延展性组合。

著录项

  • 来源
    《Materials Science and Engineering》 |2021年第8期|141803.1-141803.15|共15页
  • 作者单位

    Energy Functional Materials Laboratory (EFML) Department of Materials Science and Engineering Chungnam National University Daejeon Republic of Korea;

    Energy Functional Materials Laboratory (EFML) Department of Materials Science and Engineering Chungnam National University Daejeon Republic of Korea;

    Energy Functional Materials Laboratory (EFML) Department of Materials Science and Engineering Chungnam National University Daejeon Republic of Korea;

    Energy Functional Materials Laboratory (EFML) Department of Materials Science and Engineering Chungnam National University Daejeon Republic of Korea;

    Department of Materials Engineering Isfahan University of Technology Isfahan 84156-83111 Iran;

    Energy Functional Materials Laboratory (EFML) Department of Materials Science and Engineering Chungnam National University Daejeon Republic of Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Ultra-fine grain; Hierarchical structure; TWIP; High entropy; MBIP;

    机译:超细谷物;层次结构;twip;高熵;MBIP.;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号