首页> 外文期刊>Materials Science and Engineering >The effect of local atomic configuration in high-entropy alloys on the dislocation behaviors and mechanical properties
【24h】

The effect of local atomic configuration in high-entropy alloys on the dislocation behaviors and mechanical properties

机译:局部原子构型在高熵合金对位错行为和机械性能下的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

High-entropy alloys (HEAs) are promising as advanced structural materials for various applications owning to their comprehensive properties combining high strength and ductility, good thermal stability and high resistance to wear and corrosion. Although such outstanding mechanical properties have been attributed to the four core effects, it is still unclear how the inherent local chemical variations in HEAs affect dislocation dynamics and plastic deformation behaviors at the nanoscale. Herein, we first introduced an accurate in-house potential for Al_xCoCrFeNi HEA, and then employed molecular dynamics simulation methods to investigate the effect of local atomic configuration (LAC) on the dislocation motion, lattice friction and critical shear stress. The results show that compared with pure metals, there is a huge fluctuation in the critical shear stress of dislocation motion in the HEA, indicating that LAC strongly influences the dislocation dynamics and plastic deformation behaviors. It is suggested from the results that introducing large-size atoms in HEA would effectively enhance the dislocation dynamics, which is beneficial to both strengthening and toughening of HEAs.
机译:高熵合金(HEA)是作为拥有其综合性能的各种应用的先进结构材料,其组合高强度和延展性,良好的热稳定性和高耐磨性和耐腐蚀性。虽然这种出色的机械性能已经归因于四种核心效应,但仍然尚不清楚HEAS的固有局部化学变化如何影响纳米级的位错动态和塑性变形行为。在此,我们首先向Al_xCocrofeni Hea引入了准确的内部电位,然后采用分子动力学模拟方法来研究局部原子配置(LAC)对位错运动,晶格摩擦和临界剪切应力的影响。结果表明,与纯金属相比,HEA中位错运动的临界剪切应力存在巨大波动,表明LAC强烈影响错位动力学和塑性变形行为。从HEA中引入大尺寸原子的结果建议,有效地增强了脱位动态,这有利于HEAS的加强和增韧。

著录项

  • 来源
    《Materials Science and Engineering》 |2021年第20期|141253.1-141253.8|共8页
  • 作者单位

    Department of Materials Science and Engineering University of North Texas Demon TX 76203 USA;

    School of Materials Science and Engineering Xi'an Technological University Xi'an 720072 China;

    Department of Materials Science and Engineering University of North Texas Demon TX 76203 USA;

    Department of Materials Science and Engineering University of North Texas Demon TX 76203 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号