首页> 外文期刊>Materials Science and Engineering >Microstructures analysis and quantitative strengthening evaluation of powder metallurgy Ti-Fe binary extruded alloys with (α+β)-dual-phase
【24h】

Microstructures analysis and quantitative strengthening evaluation of powder metallurgy Ti-Fe binary extruded alloys with (α+β)-dual-phase

机译:(α+β) - 阶段粉末冶金Ti-Fe二元挤出合金的微观结构分析及定量强化评价

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In this study, Fe, one of the inexpensive p-phase stabilizers, was employed to fabricate Ti alloys by the powder metallurgy route. The formation mechanism of unique microstructures and texture of the extruded Ti-Fe alloy was elucidated through scanning electron microscopy-electron backscatter diffraction (SEM-EBSD) and transmission electron microscopy-energy-dispersive X-ray spectroscopy (TEM-EDS). For the Ti-Fe alloys consolidated from the pre-mixed pure Ti powder and Fe particles by spark plasma sintering and following hot extrusion, the additive Fe atoms existed as solid solution atoms in β-Ti phase. The increment in the Fe content was effective in increasing the β-Ti phase volume fraction and refining the α-Ti grains. The mean α-Ti grain size of Ti-4 wt.% Fe alloy was 1.27 μm, which was about ten times less than that of the pure Ti material (12.42 μm). The α and β phases of the extruded Ti-1-4 wt.% Fe material were aligned in parallel to the extrusion direction, and they suppressed the grain growth of each other. Although yield stress (YS) and tensile strength (TS) remarkably increased to 1093 MPa and 1183 MPa, respectively, with an increase in the Fe content, a large elongation of 28-38% was obtained in the extruded Ti-Fe alloys. These tensile properties were favorable compared to the commercial Ti-6 wt.% Al-4 wt.% V alloy. The dominant strengthening factors for the Ti-Fe alloys were α-Ti grain refinement and β-Ti hard phase dispersion. In the case of 4 wt% Fe addition, 50% of the YS increment was due to the latter strengthening mechanism.
机译:在本研究中,Fe是廉价的P相稳定剂之一,用于通过粉末冶金途径制造Ti合金。通过扫描电子显微镜 - 电子背散射衍射(SEM-EBSD)和透射电子显微镜 - 能量分散X射线光谱(TEM-EDS),阐明了挤出的Ti-Fe合金的独特微结构和质地的形成机制。对于通过火花等离子体烧结和在热挤出之后从预混合纯Ti粉末和Fe颗粒固结的Ti-Fe合金,添加剂Fe原子作为β-Ti相中的固溶原子存在。 Fe含量中的增量在增加β-Ti相体积分数并改善α-Ti颗粒时是有效的。 Ti-4重量%的平均α-Ti晶粒尺寸为1.27μm,其比纯Ti材料(12.42μm)小约10倍。挤出的Ti-1-4重量%的α和β相。%Fe材料平行于挤出方向对准,并且它们抑制彼此的晶粒生长。尽管屈服应力(Ys)和拉伸强度(TS)分别显着增加至1093MPa和1183MPa,但在Fe含量的增加,在挤出的Ti-Fe合金中获得了28-38%的大伸长率。与商业Ti-6重量%相比,这些拉伸性质是有利的。%Al-4重量%V合金。 Ti-Fe合金的主要增强因子是α-Ti晶粒细化和β-Ti硬相分散。在4wt%Fe添加的情况下,50%的Ys增量是由于后一种加强机制。

著录项

  • 来源
    《Materials Science and Engineering》 |2021年第28期|140708.1-140708.13|共13页
  • 作者单位

    Joining and Welding Research Institute Osaka University 11-1 Mihogaoka Ibaraki Osaka 567-0047 Japan;

    Joining and Welding Research Institute Osaka University 11-1 Mihogaoka Ibaraki Osaka 567-0047 Japan;

    Joining and Welding Research Institute Osaka University 11-1 Mihogaoka Ibaraki Osaka 567-0047 Japan;

    Joining and Welding Research Institute Osaka University 11-1 Mihogaoka Ibaraki Osaka 567-0047 Japan;

    Joining and Welding Research Institute Osaka University 11-1 Mihogaoka Ibaraki Osaka 567-0047 Japan;

    Joining and Welding Research Institute Osaka University 11-1 Mihogaoka Ibaraki Osaka 567-0047 Japan;

    Department of Mechanical Engineering Osaka University 2-1 Yamadaoka Suita Osaka 565-0871 Japan;

    Department of Aeronautical Structural Engineering Northwestern Polytechnical University Xi'an Shaanxi province 710072 PR China;

    Joining and Welding Research Institute Osaka University 11-1 Mihogaoka Ibaraki Osaka 567-0047 Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Titanium alloys; Powder metallurgy; Solid solution; Grain refinement; Phase transformation; Strengthening behavior;

    机译:钛合金;粉末冶金;实在的方法;谷物改进;相变;加强行为;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号