...
首页> 外文期刊>Materials Science and Engineering >Twin evolution and work-hardening phenomenon of a bulk ultrafine grained copper with high thermal stability and strength-ductility synergy
【24h】

Twin evolution and work-hardening phenomenon of a bulk ultrafine grained copper with high thermal stability and strength-ductility synergy

机译:具有高热稳定性和强度 - 延展性协同的散装超细粒子铜的双向演化和工作 - 硬化现象

获取原文
获取原文并翻译 | 示例

摘要

In this paper, Cu is severely cryorolled by employing low deformation strain per pass, large roller diameter, and moderate deformation speed. This process leads to the evolution of a unique homogenous ultrafine grained (UFG) microstructure enriched with deformation nanotwins and dislocation-rich structures. Excellent thermal stability combined with high strength-ductility synergy is observed during isochronous annealing of the UFG material. Accelerated recovery consumes the thermal energy imparted during low temperature (150-200 °C) annealing and averts premature grain and twin coarsening. Microstructural homogenization prevents disproportionate recrystallization and grain growth. Dense clusters of deformation nanotwins reduce the grain boundary mobility and arrest the grain growth. At 200 °C, twin complexes comprising a crisscross network of fine deformation and annealing twins are formed, further enhancing the thermal stability at higher annealing temperatures (200-250 °C). However, large-scale growth of these annealing twins at 300 °C devours the nanotwin complexes and reduces their stabilizing efficiency, thereby compromising the thermal stability. Ultimately at 350 °C, a complete transformation of the strained UFG microstructure into a fully recrystallized bimodal microstructure is observed. Large concentration of thermally stable, recovered nanometric grains and twins reduces the dislocation mean free path and promotes rapid work-hardening in UFG Cu. They help in retaining good strength-ductility synergy of the material up to a very high annealing temperature.
机译:在本文中,通过采用每次通过的低变形菌株,大的辊直径和中等变形速度来严重愈合Cu。该方法导致富含变形纳米型和富错位结构的独特均匀超细晶粒(UFG)微观结构的演变。在UFG材料的同步退火期间观察到优异的热稳定性结合高强度 - 延展性协同作用。加速回收消耗低温(150-200°C)退火和避免过早谷物和双粗化的热能。微观结构均化可防止不成比例的重结晶和晶粒生长。致密的变形簇簇纳米管减少晶界流动性并抑制晶粒生长。在200℃下,形成包含细晶变形和退火双胞胎的粗糙网络的双络合物,进一步提高了更高的退火温度(200-250℃)的热稳定性。然而,在300℃下,这些退火双胞胎的大规模生长缺乏纳米电线复合物并降低它们的稳定效率,从而损害了热稳定性。最终在350℃下,观察到应变UFG微观结构的完全转化为完全再结晶的双峰组织。大浓度的热稳定,回收的纳米颗粒和双胞胎减少了脱位均值的可自由途径,并在UFG Cu中促进快速的工作硬化。它们有助于将材料的良好强度 - 延展性协同稳定在非常高的退火温度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号