首页> 外文期刊>Materials Science and Engineering >Elastic-viscoplastic self-consistent modeling for finite deformation of polycrystalline materials
【24h】

Elastic-viscoplastic self-consistent modeling for finite deformation of polycrystalline materials

机译:弹性粘弹性自一致模型,用于多晶材料有限变形

获取原文
获取原文并翻译 | 示例
       

摘要

Anisotropic 1 site and 2-site self-consistent models are developed to describe the elastic-viscoplastic behavior of polycrystalline materials deformed to finite strains on the basis of rate-dependent crystallographic slip and a generalized Hill-Hutchinson self-consistent approach. The choice of rate-dependent constitutive law at single crystal level implemented in the models is discussed through fitting experimental data and calibrating viscous parameters. It is found that drag-stress type Norton law works well for the 1-site elastic-viscoplastic self-consistent (EVPSC) model while threshold stress type Norton law is suitable for the 2-site EVPSC model to assure that the viscoplastic inter-granular interaction is realistic. Both models have been verified by thoroughly fitting experimental data in literatures. For the 1-site EVPSC model, selected experimental data covers both macroscopic and microscopic mechanical responses of steels during deformation with a large range of strain rate from the quasi-static (10~(-4) s~(-1)) to the dynamic (~10~4 s~(-1)). For the 2-site EVPSC model, insitu neutron diffraction data of nickel-based superalloys with various microstructures was fitted. Both models generally fit the experimental data well. A comparison between the EVPSC and elastic-plastic self-consistent (EPSC) models on the prediction of lattice strains has also been made for both the 1-site and 2-site cases, which verifies the predictability on lattice strains of the newly developed EVPSC models. A validation of the homogenization approach for the EVPSC modeling has been performed, which confirms that the proposed EVPSC models are applicable for cubic structure materials with finite deformations. Our formulation of EVPSC modeling developed in this work shines a spotlight on the way of developing a multi-functional self-consistent model to predict both macroscopic and microscopic deformation behaviors of various polycrystalline materials under different loading rates of 10~(-4) s~(-1) ~10~4 s~(-1).
机译:开发了各向异性1位点和2位现场的自我一致的模型,以描述基于速率依赖性晶体滑动和普通的山丘自我一致的方法变形为有限菌株的多晶材料的弹性粘弹性行为。通过拟合实验数据和校准粘性参数,讨论了模型中实施的单晶水平的速率依赖本构规律。结果发现,阻力型Norton Law适用于1位Elastic-Viscoplastic自洽(EVPSC)模型,而阈值应力型Norton Law适用于2位EVPSC模型,以确保粘性间粒状互动是现实的。两种模型都通过在文献中彻底拟合的实验数据进行了验证。对于1位现场EVPSC型号,所选实验数据在变形过程中涵盖钢的宏观和微观机械响应,从准静电(10〜(-4)S〜(-1))到的大范围的应变速率动态(〜10〜4 s〜(-1))。对于2位EVPSC模型,安装了具有各种微结构的镍基超合金的Insitu中子衍射数据。两种型号通常都适合实验数据。对于1位点和2位案例,EVPSC和弹性塑料自我一致(EPSC)模型的比较也是对晶格菌株预测的模型,这既可以验证新开发的EVPSC晶格株的可预测性楷模。已经进行了对EVPSC建模的均化方法的验证,这证实了所提出的EVPSC模型适用于具有有限变形的立方结构材料。我们在这项工作中开发的EVPSC建模的配方在开发多功能自我一致模型的方式上透过聚光灯,以预测不同加载率为10〜(4)S〜的各种多晶材料的宏观和微观变形行为。 (-1)〜10〜4 s〜(-1)。

著录项

  • 来源
    《Materials Science and Engineering》 |2021年第2期|140325.1-140325.20|共20页
  • 作者单位

    Department of Industrial and Materials Science Chalmers University of Technology SE 41296 Goteborg Sweden Department of Physics Chalmers University of Technology SE 41296 Goteborg Sweden Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry China Academy of Engineering Physics Mianyang 621999 PR China;

    Department of Industrial and Materials Science Chalmers University of Technology SE 41296 Goteborg Sweden;

    Department of Physics Chalmers University of Technology SE 41296 Goteborg Sweden;

    Department of Industrial and Materials Science Chalmers University of Technology SE 41296 Goteborg Sweden;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Elastic-viscoplastic self-consistent (EVPSC); model; In situ neutron Diffraction; Polycrystalline materials; Finite deformation;

    机译:弹性粘弹性自我一致(EVPSC);模型;原位中子衍射;多晶材料;有限变形;
  • 入库时间 2022-08-18 22:21:31

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号