...
首页> 外文期刊>Materials Science and Engineering >Study on the microstructure optimization and mechanical properties of dissimilar TC4-304L arc-brazing joints
【24h】

Study on the microstructure optimization and mechanical properties of dissimilar TC4-304L arc-brazing joints

机译:不同TC4-304L弧钎焊接头的微观结构优化和力学性能研究

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the microstructure optimization and mechanical property of joints are studied when the Cu, CuSi3, and CuNilO wires are used to Cold Metal Transfer arc-braze TC4 to 304L. Based on the microstructure analysis and thermodynamic calculation, the existing state of Ti and Fe atoms are transferred from high brittleness Ti-Fe to less brittle Ti-Fe-Si intermetallics when the welding wire is changed from Cu to CuSi3 due to the lower Gibbs free energy of Ti-Fe-Si intermetallics. Furthermore, the (Fe, Ni) solution and Ti-Ni intermetallics with the lowest hardness are formed when CuNilO wire is used. Thus, three Ti-Fe suppression mechanisms are concluded: suppressed by forming intermetallics and diffusion inhibition, suppressed by forming intermetallics, and suppressed by forming intermetallics and solution. Based on the microstructure optimization, the max hardness of intermetallics layer decreases from 769 to 654 Hv and the max tensile strength increases from 186.4 to 319.4 MPa. However, all cracks of the joints with different wires will initiate from the bottom of the seam and propagate in the TC4/seam transition zone due to the high Schmid factor. Besides, the crack propagation rate of more than 200 m/s can be in-situ measured by high-speed camera with 200000 fps.
机译:本文研究了Cu,Cusi3和CuniLo线用于冷金属转移弧形TC4至304L时,研究了关节的微观结构优化和力学性能。基于微观结构分析和热力学计算,当焊丝从Cu到Cusi3自由时从Cu到Cusi3改变时,Ti和Fe原子的现有状态从高脆性Ti-Fe转移到较少的脆性Ti-Fe-Si金属间金属间质TI-FE-SI金属采矿的能量。此外,当使用春核线时,形成具有最低硬度的(Fe,Ni)溶液和Ti-Ni金属间质。因此,结论了三种Ti-Fe抑制机制:通过形成金属间化合物和扩散抑制来抑制,通过形成金属间质,通过形成金属间质和溶液来抑制。基于微观结构优化,金属间化层的最大硬度从769降低到654 HV,最大拉伸强度从186.4增加到319.4MPa。然而,具有不同导线的关节的所有裂缝将从接缝的底部开始,并且由于高施密因子,在TC4 /缝过渡区中传播。此外,通过200000 FPS的高速相机,可以采用大于200米/秒的裂缝传播速率。

著录项

  • 来源
    《Materials Science and Engineering 》 |2020年第24期| 139566.1-139566.10| 共10页
  • 作者单位

    Shanghai Key Laboratory of Materials Laser Processing and Modification School of Materials Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 PR China Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration 800 Dongchuan Road Shanghai 200240 PR China;

    Shanghai Key Laboratory of Materials Laser Processing and Modification School of Materials Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 PR China Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration 800 Dongchuan Road Shanghai 200240 PR China;

    Shanghai Key Laboratory of Materials Laser Processing and Modification School of Materials Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 PR China Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration 800 Dongchuan Road Shanghai 200240 PR China;

    Shanghai Key Laboratory of Materials Laser Processing and Modification School of Materials Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 PR China Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration 800 Dongchuan Road Shanghai 200240 PR China;

    Shanghai Key Laboratory of Materials Laser Processing and Modification School of Materials Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 PR China Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration 800 Dongchuan Road Shanghai 200240 PR China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Titanium alloy; Stainless steel; Dissimilar joint; Intermetallics; Fracture behavior; Crack propagation;

    机译:钛合金;不锈钢;异种关节;金属间金属间;骨折行为;裂缝繁殖;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号