首页> 外文期刊>Materials Science and Engineering >Tailoring grain refinement through thickness in magnesium alloy via stationary shoulder friction stir processing and copper backing plate
【24h】

Tailoring grain refinement through thickness in magnesium alloy via stationary shoulder friction stir processing and copper backing plate

机译:通过静止肩摩擦搅拌加工和铜背板剪裁晶粒细化镁合金厚度

获取原文
获取原文并翻译 | 示例
           

摘要

To develop ultrafine grains (UFG) in 6.35 mm thick magnesium alloy, stationary shoulder friction stir processing (SSFSP) with steel and copper backing plates was conducted. Steel backing plate produced uniform fine grains (FG) size of 4.98, 4.75, 4.12 μm in top, middle, bottom of the stir zone (SZ), respectively. In contrast, copper backing plate tailored microstructure from FG (4.1 μm) in the top to UFG (0.96 μm) in the bottom of SZ. SSFSP produced uniform and gradient microstructures, altering temperature gradient by placing steel and copper backing plates, respectively. It is worth to note that UFG microstructure achieved without usage of external cooling, owning to the copper backing plate. Most of the grains found under ~2 μm size in UFG microstructure. FG and UFG microstructures contributed to the enhancement in the ductility and strength, respectively. UFG resulted in significant improvement in hardness and tensile strength by ~80% and 24% of the base material, respectively. The intensity of strong basal texture throughout the thickness found independent of the backing plate type. Microstructure evolutions across the SZ thickness for both processing conditions are discussed using electron back scattered diffraction (EBSD).
机译:为了在6.35mm厚的镁合金中开发超细晶粒(UFG),进行钢和铜背板的固定肩摩擦加工(SSFSP)。钢背板分别产生均匀的细粒(FG)尺寸为4.98,4.75,4.12μm,中间,中间,搅拌区底部(SZ)。相比之下,在SZ底部的顶部到UFG(0.96μm)的FG(4.1μm)定制了微观结构。 SSFSP产生均匀和梯度微结构,分别通过放置钢和铜板板来改变温度梯度。值得注意的是,UFG微观结构在没有外部冷却的情况下实现,拥有铜背板。大部分晶粒在UFG微观结构中发现〜2μm尺寸。 FG和UFG微观结构分别有助于增强延展性和强度。 UFG分别导致硬度和抗拉强度的显着改善,分别通过〜80%和24%的基础材料。整个厚度的强基底纹理强度与背板类型无关。使用电子背面散射衍射(EBSD)讨论了用于两个处理条件的Sz厚度的微观结构演变。

著录项

  • 来源
    《Materials Science and Engineering》 |2020年第may15期|139322.1-139322.10|共10页
  • 作者单位

    State Key Laboratory of Solidification Processing Shaanxi Key Laboratory of Friction Welding Technologies School of Materials Science and Engineering Northwestern Polytechnical University Xi'an 710072 Shaanxi PR China Mechanical Engineering Department School of Technology Pandit Deendayal Petroleum University Gandhinagar 382007 Gujarat India;

    State Key Laboratory of Solidification Processing Shaanxi Key Laboratory of Friction Welding Technologies School of Materials Science and Engineering Northwestern Polytechnical University Xi'an 710072 Shaanxi PR China;

    State Key Laboratory of Solidification Processing Shaanxi Key Laboratory of Friction Welding Technologies School of Materials Science and Engineering Northwestern Polytechnical University Xi'an 710072 Shaanxi PR China;

    State Key Laboratory of Solidification Processing Shaanxi Key Laboratory of Friction Welding Technologies School of Materials Science and Engineering Northwestern Polytechnical University Xi'an 710072 Shaanxi PR China;

    State Key Laboratory of Solidification Processing Shaanxi Key Laboratory of Friction Welding Technologies School of Materials Science and Engineering Northwestern Polytechnical University Xi'an 710072 Shaanxi PR China;

    Helmholtz-Zentrum Geesthacht Institute of Materials Research Materials Mechanics Solid State Joining Processes Department Max-Planck-Str. 1 21502 Geesthacht Germany;

    Helmholtz-Zentrum Geesthacht Institute of Materials Research Materials Mechanics Solid State Joining Processes Department Max-Planck-Str. 1 21502 Geesthacht Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Stationary shoulder; Ultrafine grained microstructure; Friction stir processing; Grain refinement; Copper backing plate;

    机译:静止肩;超细颗粒微观结构;摩擦搅拌加工;谷物改进;铜板板;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号