...
首页> 外文期刊>Materials Science and Engineering >Towards an integrated experimental and computational framework for large-scale metal additive manufacturing
【24h】

Towards an integrated experimental and computational framework for large-scale metal additive manufacturing

机译:迈向大型金属添加剂制造的综合实验和计算框架

获取原文
获取原文并翻译 | 示例
           

摘要

Using the Metal Big Area Additive Manufacturing (MBAAM) system, a thin steel wall was manufactured from a low carbon steel wire. The wall was then characterized comprehensively by high-throughput high-energy X-ray diffraction (HEXRD), electron backscatter diffraction (EBSD), and in-situ HEXRD tensile tests. With the predicted temperature histories from the finite element-based additive manufacturing process simulations, the correlations between processing parameters, microstructure, and properties were established. The correlation between the final microstructure with the predicted temperature history is well explained with the material's continuous cooling transformation (CCT) diagram calculated based on the composition of the low carbon steel wire. The final microstructure is dependent on the cooling rate during austenite to ferrite/bainite transformation during initial cooling and the subsequent reheating cycles. Fast cooling rate resulted in small ferrite grain size and fine bainite structure at the location closest to the base plate. Slower cooling rate at the side wall location and repeated reheating cycles to the ferrite-pearlite regions resulted in all allotriomorphic (equiaxed) ferrite with medium grain size with small amount of pearlite. With no reheating cycles, the top location has the slowest cooling rate and a large grained allotriomorphic ferrite and bainitic structures. The measured mechanical strength is then related to the microstructural feature size (grain or lath size) observed in those locations. A good correlation is found between the mechanical properties, microstructure features and the temperature history at various locations of the printed wall.
机译:使用金属大面积添加剂制造(MBAAM)系统,由低碳钢丝制造薄钢壁。然后通过高通量高能量X射线衍射(六角),电子反向散射衍射(EBSD)和原位六进抗拉试验综合征壁。利用来自基于有限元添加剂制造过程模拟的预测温度历史,建立了处理参数,微观结构和性能之间的相关性。利用基于低碳钢线的组成计算的材料的连续冷却变换(CCT)图,最终微观结构与预测温度历史之间的相关性很好地解释。最终的微观结构取决于奥氏体期间的冷却速率在初始冷却期间与铁氧体/贝氏体转化和随后的再加热循环。快速冷却速率导致在最靠近底板的位置处的小铁氧体粒度和细贝氏体结构。侧壁位置的冷却速率较慢,并重复再加热循环到铁素体 - 珠光体区域,导致所有同种异体(Equiadiaxed)铁氧体,中粒尺寸少量珠光体。没有再加热循环,顶部位置具有最慢的冷却速度和大颗粒的同种异体铁素体和贝氏体结构。然后测量的机械强度与在这些位置观察到的微观结构特征尺寸(谷物或板条尺寸)有关。在印刷壁的各个位置处的机械性能,微观结构特征和温度历史之间发现了良好的相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号