首页> 外文期刊>Materials Science and Engineering >Flow stress and ductility of AA7075-T6 aluminum alloy at low deformation temperatures
【24h】

Flow stress and ductility of AA7075-T6 aluminum alloy at low deformation temperatures

机译:低变形温度下AA7075-T6铝合金的流变应力和塑性

获取原文
获取原文并翻译 | 示例
           

摘要

The present investigation has been conducted in order to develop a rational approach able to describe the changes in flow stress of AA7075-T6 aluminum alloy with deformation temperature and strain rate, when this material is deformed at temperatures in the range of 123-298 K at strain rates in the range of 4 × 10~(-4) to 5 × 10~(-2) s~(-1). The constitutive formulation that has been advanced to accomplish these objectives represents a simplified form of the mechanical threshold stress (flow stress at O K) model developed at Los Alamos National Laboratory (Los Alamos, New Mexico, USA). Thus, it is assumed that the current flow stress of the material arises from both athermal and thermal barriers to dislocation motion. In the present case, the effect of three thermal barriers has been considered: solid solution, precipitation hardening and work-hardening. The first two effects do not evolve during plastic deformation, whereas the last one is considered as an evolutionary component of the flow stress. Such an evolution is described by means of the hardening law earlier advanced by Estrin and Mecking (1984) [20]. The law is implemented in differential form and is integrated numerically in order to update the changes in strain rate that occur during tensile tests carried out both at constant and variable crosshead speed. The extrapolation of the hardening components from 0 K to finite temperatures is accomplished by means of the model earlier advanced by Kocks (1976) [19]. The results illustrate that the constitutive formulation developed in this way is able to describe quite accurately both the flow stress and work-hardening rate of the material, as well as temperature and strain rate history effects that are present when deformation conditions change in the course of plastic deformation. The evaluation of the ductility of the alloy indicates that the changes in this property are mainly determined by deformation temperature rather by strain rate. When deformation temperature decreases from 298 to 123 K, ductility also decreases from ~35 to 24%. However, despite these relatively small variations, significant changes in the fracture morphology could be observed on the fracture surfaces of the examined specimens, with the predominance of a mixed ductile-brittle mechanism at lower temperatures.
机译:进行本研究是为了开发一种合理的方法,该方法能够描述AA7075-T6铝合金在123-298 K范围内的温度下变形时随变形温度和应变速率的变化。应变率在4×10〜(-4)到5×10〜(-2)s〜(-1)范围内。为实现这些目标而提出的本构公式代表了机械阈值应力(O K处的流动应力)模型的简化形式,该模型是由Los Alamos国家实验室(美国新墨西哥州洛斯阿拉莫斯)开发的。因此,假设材料的电流应力是由位错运动的无热和热障引起的。在当前情况下,已经考虑了三个热障的作用:固溶,沉淀硬化和加工硬化。前两个效应在塑性变形过程中不会演化,而后一个效应被认为是流动应力的演化成分。这种演化可以通过先前由Estrin和Mecking(1984)[20]提出的硬化定律来描述。该定律以微分形式实现,并在数值上进行积分,以更新在恒定和可变十字头速度下进行的拉伸试验期间发生的应变率变化。硬化成分从0 K到有限温度的外推是通过Kocks(1976)先前提出的模型完成的[19]。结果表明,以此方式开发的本构公式能够相当准确地描述材料的流变应力和加工硬化率,以及变形条件在变化过程中出现的温度和应变率历史影响。塑性变形。合金延展性的评估表明,这种性能的变化主要由变形温度而不是应变速率决定。当变形温度从298 K降低到123 K时,延性也从〜35降低到24%。然而,尽管存在这些相对小的变化,但是在较低的温度下,混合的韧性-脆性机制占主导地位,但是在被检样品的断裂表面上仍可以观察到断裂形态的显着变化。

著录项

  • 来源
    《Materials Science and Engineering》 |2011年第3期|p.895-905|共11页
  • 作者单位

    School of Metallurgical Engineering and Materials Science, Faculty of Engineering, Universidad Central de Venezuela, Postal Address 47885, Los Chaguaramos, Caracas 1041, Venezuela,Venezuelan National Academy for Engineering and Habitat, Palacio de las Academias, Postal Address 1723, Caracas 1010, Venezuela,School of Metallurgical Engineering and Materials Science, Faculty of Engineering, Universidad Central de Venezuela, Postal Address 47885, Los Chaguaramos, Caracas 1041, Venezuela;

    School of Metallurgical Engineering and Materials Science, Faculty of Engineering, Universidad Central de Venezuela, Postal Address 47885, Los Chaguaramos, Caracas 1041, Venezuela;

    School of Metallurgical Engineering and Materials Science, Faculty of Engineering, Universidad Central de Venezuela, Postal Address 47885, Los Chaguaramos, Caracas 1041, Venezuela;

    School of Metallurgical Engineering and Materials Science, Faculty of Engineering, Universidad Central de Venezuela, Postal Address 47885, Los Chaguaramos, Caracas 1041, Venezuela;

    School of Mechanical Engineering, Faculty of Engineering, Universidad Central de Venezuela, Postal Address 47885, Los Chaguaramos, Caracas 1041, Venezuela;

    School of Metallurgical Engineering and Materials Science, Faculty of Engineering, Universidad Central de Venezuela, Postal Address 47885, Los Chaguaramos, Caracas 1041, Venezuela;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    flow stress; constitutive description; low deformation temperatures; AA7075-T6 aluminum alloy; ductility;

    机译:流应力本构描述;变形温度低;AA7075-T6铝合金;延展性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号