...
首页> 外文期刊>Materials Science and Engineering >Modeling of the influence of coarsening on viscoplastic behavior of a 319 foundry aluminum alloy
【24h】

Modeling of the influence of coarsening on viscoplastic behavior of a 319 foundry aluminum alloy

机译:模拟粗化对319铸造铝合金的粘塑性行为的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Both metallurgical and mechanical behaviors of a 319 foundry aluminum alloy have been modeled by means of a multiscale approach. The nano-scale, represented by the coarsening of Al_2Cu precipitates, has been modeled according to the Lifshitz-Slyozov-Wagner (LSW) law in a range of temperature going from 23 ℃ to 300 ℃ up to 1000 h aging time. Results were then compared to transmission electron microscope (TEM) observations and are in good agreement with the experimental measurements. The model allows us to know the critical radius, the volume fraction and the number of particles per urn3 in a α-phase representative volume element (RVE). The increase in yield stress generated by the interaction of dislocations with precipitates, lattice and solid solution, is modeled on the microscale. The yield stress becomes thus a function of the precipitation state, and is time/temperature dependent. These two models were then combined into a mechanical macroscale model in order to represent the Low Cycle Fatigue (LCF) behavior of the material. An elasto-viscoplastic law has been used and all the material parameters were experimentally determined with LCF stress/strain loops for the first cycle and for the mechanical steady state. The simulation results are in good agreement with the experiments.
机译:319铸造铝合金的冶金和力学行为均已通过多尺度方法进行了建模。根据Lifshitz-Slyozov-Wagner(LSW)律,以Al_2Cu沉淀物的粗化为代表的纳米级模型,温度范围为23℃至300℃,最高时效时间为1000 h。然后将结果与透射电子显微镜(TEM)的观察结果进行比较,并且与实验测量结果非常吻合。该模型使我们能够知道α相代表体积元素(RVE)中的临界半径,体积分数和每urn3的颗粒数。由位错与沉淀,晶格和固溶体的相互作用产生的屈服应力的增加是在微观尺度上建模的。因此,屈服应力成为沉淀状态的函数,并且是时间/温度相关的。然后将这两个模型组合为机械宏观模型,以表示材料的低周疲劳(LCF)行为。使用了弹黏塑性定律,并通过LCF应力/应变环对第一个循环和机械稳态进行了实验,确定了所有材料参数。仿真结果与实验吻合良好。

著录项

  • 来源
    《Materials Science and Engineering》 |2013年第1期|40-48|共9页
  • 作者单位

    Universite Paris-Est Creteil, lnstitut de Chimie et de Materiaux Paris-Est, CNRS UMR7182, 2-8 rue Henri Dunant, 94320 Thiais, France,Mines ParisTech, Centre des Materiaux, CNRS UMR7633, BP 87, 91003 Evry Cedex, France,Renault SA, Technocentre, Direction de I'ingenierie et des materiaux, 1 avenue du Golf, 78288 Cuyancourt, France;

    Universite Paris-Est Creteil, lnstitut de Chimie et de Materiaux Paris-Est, CNRS UMR7182, 2-8 rue Henri Dunant, 94320 Thiais, France;

    Universite Paris-Est Creteil, lnstitut de Chimie et de Materiaux Paris-Est, CNRS UMR7182, 2-8 rue Henri Dunant, 94320 Thiais, France;

    Universite Paris-Est Creteil, lnstitut de Chimie et de Materiaux Paris-Est, CNRS UMR7182, 2-8 rue Henri Dunant, 94320 Thiais, France;

    Mines ParisTech, Centre des Materiaux, CNRS UMR7633, BP 87, 91003 Evry Cedex, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    319 foundry aluminum alloy; multiscale modeling; Al_2Cu coarsening; yield stress; low cycle fatigue behavior; transmission electron microscope;

    机译:319铸造铝合金;多尺度建模Al_2Cu粗化;屈服应力低周疲劳行为;透射电子显微镜;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号