...
首页> 外文期刊>Materials Science and Engineering >Mechanical stability of individual austenite grains in TRIP steel studied by synchrotron X-ray diffraction during tensile loading
【24h】

Mechanical stability of individual austenite grains in TRIP steel studied by synchrotron X-ray diffraction during tensile loading

机译:TRIP钢中单奥氏体晶粒在拉伸载荷下的X射线衍射研究

获取原文
获取原文并翻译 | 示例

摘要

The stability of individual metastable austenite grains in low-alloyed TRIP steels has been studied during tensile loading using high-energy X-ray diffraction. The carbon concentration, grain volume and grain orientation with respect to the loading direction was monitored for a large number of individual grains in the bulk microstructure. Most austenite grains transform into martensite in a single transformation step once a critical load is reached. The orientation-dependent stability of austenite grains was found to depend on their Schmid factor with respect to the loading direction. Under the applied tensile stress the average Schmid factor decreased from an initial value of 0.44 to 0.41 at 243 MPa. The present study reveals the complex interplay of microstructural parameters on the mechanical stability of individual austenite grains, where the largest grains with the lowest carbon content tend to transform first. Under the applied tensile stress the average carbon concentration of the austenite grains increased from an initial value of 0.90 to 1.00 wt% C at 243 MPa, while the average grain volume of the austenite grains decreased from an initial value of 19 to 15 μm~3 at 243 MPa.
机译:使用高能X射线衍射研究了低合金TRIP钢中单个亚稳态奥氏体晶粒的稳定性。对于块状微观结构中的大量单个晶粒,监控了碳浓度,晶粒体积和相对于加载方向的晶粒取向。一旦达到临界载荷,大多数奥氏体晶粒会在单个转变步骤中转变为马氏体。发现奥氏体晶粒的取向依赖性稳定性取决于其相对于加载方向的施密特因子。在施加的拉应力下,平均施密特因子在243 MPa时从初始值0.44降低到0.41。本研究揭示了微观结构参数对单个奥氏体晶粒机械稳定性的复杂相互作用,其中,具有最低碳含量的最大晶粒往往先发生转变。在施加拉伸应力的情况下,奥氏体晶粒的平均碳浓度在243 MPa时从0.90的初始值增加到1.00 wt%C,而奥氏体晶粒的平均晶粒体积从初始值降低到19μm〜3在243兆帕。

著录项

  • 来源
    《Materials Science and Engineering 》 |2014年第17期| 280-287| 共8页
  • 作者单位

    Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands,Materials Innovation Institute, Mekelweg 2, 2628 CD Delft, The Netherlands;

    Dalton Cumbrian Facility, The University of Manchester, Westlakes Science & Technology Park, Moor Row, Cumbria, CA24 3HA, United Kingdom;

    Materials Innovation Institute, Mekelweg 2, 2628 CD Delft, The Netherlands,Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands;

    European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, BP 220, 38043 Grenoble Cedex, France;

    Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands;

    Novel Aerospace Materials Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS, Delft, The Netherlands;

    Fundamental Aspects of Materials and Energy, Department of Radiation Science & Technology, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Steel; Martensite; Synchrotron X-ray diffraction; Tensile deformation;

    机译:钢;马氏体同步加速器X射线衍射;拉伸变形;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号