...
首页> 外文期刊>Materials Science and Engineering >Effects of microstructures on the notch tensile fracture feature of heat-treated Ti-6Al-6V-2Sn alloy
【24h】

Effects of microstructures on the notch tensile fracture feature of heat-treated Ti-6Al-6V-2Sn alloy

机译:显微组织对热处理Ti-6Al-6V-2Sn合金缺口缺口拉伸断裂特征的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The notch tensile strength (NTS) of Ti-6Al-6V-2Sn (Ti-6-6-2) specimens heat-treated using distinct processes was investigated at various aging temperatures and correlated to microstructures. Supratransus-processed and subtransus-processed specimens were, respectively, solution-treated at 965 ℃ (above the p transus) and 900 ℃ (below the p transus), before being water-quenched and aged at specific temperatures (482 ℃, 593 ℃, and 704 ℃). Following" the water quenching, titanium martensite (α' or α") formed and decomposed into α and β phases with various sizes while aging. Additionally, the specimens that were aged at 482 ℃ achieved the peak hardness, but they were susceptible to notch brittleness and exhibited inferior NTS because a predominantly transgranular quasi-cleavage fracture separated along the α/β interface, regardless of the type of solution treatment. As the aging temperature increased, the NTS improved remarkably. This was attributed to the coarse α+β colony structure that formed in the aged specimen. The structure can facilitate crack-branching or micro-cracking under tensile straining, thereby improving fracture toughness and notch blunting while testing the NTS. Furthermore, under the same aging treatment, the NTS of the subtransus-processed specimens was greater than that of the supratransus-processed specimens, particularly for the specimens aged at 482℃ and 593 ℃, which resulted from the retarding effect of the primary α on the crack front, higher volume fraction of the β phase, and absence of the intergranular fracture in the subtransus-processed specimens while executing the notch tensile test.
机译:在不同的时效温度下研究了采用不同工艺热处理的Ti-6Al-6V-2Sn(Ti-6-6-2)试样的缺口抗张强度(NTS),并与微观结构相关。经超处理的和经超处理的标本分别在965℃(p transus之上)和900℃(p transus之下)进行固溶处理,然后在特定温度(482℃,593℃)下进行水淬和老化。和704℃)。在“水淬”之后,钛马氏体(α'或α”)形成并分解为具有不同尺寸的α和β相,同时进行时效处理。另外,在482℃时效的试样达到了峰值硬度,但它们易出现缺口脆性,且NTS较差,这是因为无论是何种固溶处理方式,沿α/β界面主要是沿晶界的准卵裂断裂。随着时效温度的升高,NTS显着改善。这归因于在老化的样品中形成的粗大的α+β集落结构。该结构可以在拉伸应变下促进裂纹分支或微裂纹,从而在测试NTS时提高断裂韧性和缺口钝化。此外,在相同的时效处理下,亚原始处理样品的NTS大于超原始处理样品的NTS,特别是对于482和593℃时效的样品,这是由于初生α对金属的阻滞作用所致。在进行缺口拉伸试验时,在亚铁加工过的试样中出现了裂纹前沿,β相的体积分数更高,且没有晶间断裂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号