...
首页> 外文期刊>Materials Science and Engineering >Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nanostructured TRIP-assisted steels
【24h】

Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nanostructured TRIP-assisted steels

机译:残余奥氏体体积分数,形态和碳含量对纳米结构TRIP辅助钢的强度和延展性的影响

获取原文
获取原文并翻译 | 示例
           

摘要

With a suite of multi-modal and multi-scale characterization techniques, the present study unambiguously proves that a substantially-improved combination of ultrahigh strength and good ductility can be achieved by tailoring the volume fraction, morphology, and carbon content of the retained austenite (RA) in a transformation-induced-plasticity (TRIP) steel with the nominal chemical composition of 0.19C-030Si-1.76Mn-1.52Al (weight percent wt%). After intercritical annealing and bainitic holding, a combination of ultimate tensile strength (UTS) of 1100 MPa and true strain of 50% has been obtained, as a result of the ultrafine RA lamellae, which are alternately arranged in the bainitic ferrite around junction regions of ferrite grains. For reference, specimens with a blocky RA, prepared without the bainitic holding, yield a low ductility (35%) and a low UTS (800 MPa). The volume fraction, morphology, and carbon content of RA have been characterized using various techniques, including the magnetic probing, scanning electron microscopy (SEM), electron-backscatter-diffraction (EBSD), and transmission electron microscopy (TEM). Interrupted tensile tests, mapped using EBSD in conjunction with the kernel average misorientation (KAM) analysis, reveal that the lamellar RA is the governing microstructure component responsible for the higher mechanical stability, compared to the blocky one. By coupling these various techniques, we quantitatively demonstrate that in addition to the RA volume fraction, its morphology and carbon content are equally important in optimizing the strength and ductility of TRIP-assisted steels.
机译:借助一套多模式和多尺度表征技术,本研究明确证明,通过调整残留奥氏体的体积分数,形态和碳含量,可以实现超高强度和良好延展性的显着改进组合( RA)在标称化学成分为0.19C-030Si-1.76Mn-1.52Al(重量百分比wt%)的相变诱导塑性(TRIP)钢中。经过临界退火和贝氏体保持后,由于超细RA薄片的出现,最终抗拉强度(UTS)为1100 MPa,真实应变为50%,它们交替排列在贝氏体铁素体的结区周围。铁素体晶粒。作为参考,在没有贝氏体固定的情况下制备的具有块状RA的标本具有较低的延展性(35%)和较低的UTS(800 MPa)。 RA的体积分数,形态和碳含量已使用多种技术进行了表征,包括磁探测,扫描电子显微镜(SEM),电子背散射-衍射(EBSD)和透射电子显微镜(TEM)。使用EBSD结合核平均无取向(KAM)分析进行的间断拉伸试验表明,与块状RA相比,层状RA是控制较高机械稳定性的主要微观结构组分。通过结合使用这些各种技术,我们定量地证明了,除了RA体积分数外,其形态和碳含量对于优化TRIP辅助钢的强度和延展性同样重要。

著录项

  • 来源
    《Materials Science and Engineering》 |2015年第11期|551-564|共14页
  • 作者单位

    Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, 3 Wenhua Road, Shenyang 110004, China;

    Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, 3 Wenhua Road, Shenyang 110004, China;

    Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352, USA;

    Key Laboratory for Anisotropy and Texture of Materials (MOE), Northeastern University, 3 Wenhua Road, Shenyang 110004, China;

    Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA;

    Max-Planck-Institut fuer Eisenforschung, Max-Planck-Str. 1, 8, 40237 Duesseldorf, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Retained austenite; Morphology; Mechanical stability; Strength; Ductility;

    机译:残余奥氏体;形态学;机械稳定性强度;延展性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号