...
首页> 外文期刊>Materials Science and Engineering >Microstructure damage evolution associated with cyclic deformation for extruded AZ31B magnesium alloy
【24h】

Microstructure damage evolution associated with cyclic deformation for extruded AZ31B magnesium alloy

机译:与挤压变形AZ31B镁合金循环变形相关的组织破坏演变

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Fatigue damage evolution of extruded AZ31B magnesium (Mg) alloy is investigated under strain-controlled tension-compression loading along the extrusion direction at various strain amplitudes, and the different cyclic deformation behaviors are observed. At the strain amplitude of 2%, the tensile peak stress displays significant cyclic softening, whereas the compressive peak stress shows consistent cyclic hardening. At 1%, moderate cyclic hardening is observed at both the tensile peak and compressive peak stresses. At 0.5%, the tensile peak stress presents stable cyclic hardening, whereas the compressive peak stress almost keeps constant. The microstructure morphologies associated with the cyclic deformation are analyzed by scanning electronic microscope (SEM). The degree of deformation twins is evaluated by analyzing X-ray diffraction (XRD) using a normalized parameter λ. The results show the fatigue crack initiation modes and its propagation modes are dependent on the strain amplitude. At 2%, grain boundary (GB) cracking and triple joint cracking are detected after 1st loading cycle. At 1%, fatigue crack initiates at grain boundary (GB cracking), twin boundary (TB cracking) and triple joint of three neighboring grains. Both grain boundary induced (GB-induced) intergranular and persistent slip band induced (PSB-induced) transgranular propagation modes play an important role in the early-stage crack growth. At 0.5%, crack initiation modes are similar to that at 1%, but GB-induced intergranular propagation mode dominates the early-stage crack growth. The effects of the microstructure (texture, grain size and uniformity) on the fatigue damage behavior are discussed.
机译:研究了在不同应变幅度下沿挤压方向在应变控制的拉伸压缩载荷下,挤压的AZ31B镁合金的疲劳损伤演化,并观察到了不同的循环变形行为。在2%的应变幅度下,拉伸峰值应力表现出明显的循环软化,而压缩峰值应力表现出一致的循环硬化。在1%时,在拉伸峰值和压缩峰值应力处均观察到中等程度的循环硬化。在0.5%时,拉伸峰值应力呈现稳定的循环硬化,而压缩峰值应力几乎保持恒定。通过扫描电子显微镜(SEM)分析与循环变形相关的微观结构形态。通过使用归一化参数λ分析X射线衍射(XRD)来评估变形孪晶的程度。结果表明,疲劳裂纹的萌生方式及其传播方式与应变幅度有关。在2%时,在第一个加载周期后检测到晶界(GB)开裂和三重接头开裂。在1%时,疲劳裂纹在三个相邻晶粒的晶界(GB裂纹),双晶界(TB裂纹)和三重接合处开始。晶界诱导(GB诱导)的晶间和持久滑移带诱导(PSB诱导)的跨晶传播模式均在早期裂纹扩展中起重要作用。在0.5%时,裂纹萌生模式与在1%时相似,但GB诱导的晶间传播模式主导了早期裂纹的扩展。讨论了微观结构(质地,晶粒尺寸和均匀性)对疲劳损伤行为的影响。

著录项

  • 来源
    《Materials Science and Engineering》 |2016年第15期|171-180|共10页
  • 作者

    YingXiong;

  • 作者单位

    Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education, Zhejiang University of Technology, Hangzhou,Zhejiang 310032, China,College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Magnesium alloy; Cyclic deformation; Damage evolution;

    机译:镁合金循环变形;伤害演变;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号