...
首页> 外文期刊>Materials Science and Engineering >Improvement of microstructure, mechanical properties and hot workability of a TiAl-Nb-Mo alloy through hot extrusion
【24h】

Improvement of microstructure, mechanical properties and hot workability of a TiAl-Nb-Mo alloy through hot extrusion

机译:通过热挤压改善TiAl-Nb-Mo合金的组织,力学性能和热加工性

获取原文
获取原文并翻译 | 示例
           

摘要

γ-TiAl alloys are excellent candidate materials for high-temperature applications, although poor hot workability limits their widespread application. In the present study, the microstructure, mechanical properties and hot workability of TiAl-Nb-Mo alloy in the as-cast and as-extruded conditions were investigated. The as-cast TiAl alloy consisted of γ/α_2 lamellae, γ and β phase distributed at colony boundaries and on the lamellar interfaces. The tiny particles of ω_0 phase were formed, transformed from β phase during HIP treatment, which dissolved after hot extrusion. The TiA1 alloy exhibited improved mechanical properties and excellent hot workability after hot extrusion because of grain refinement, the introduction of β phase and the disappearance of ω_0 phase. The anomalous yield stress phenomenon occurring in as-cast material disappeared in the as-extruded condition, which was ascribed to grain refinement that reduced the resistance of grain boundaries to intragranular slip at elevated temperature. The findings demonstrate the benefits of introducing small amounts of β phase to improve hot workability of TiAl-Nb-Mo alloys, particularly when followed by heat treatment to eliminate the β phase and increase the mechanical properties.
机译:γ-TiAl合金是高温应用的极佳候选材料,尽管较差的热加工性能限制了它们的广泛应用。在本研究中,研究了铸态和挤压条件下TiAl-Nb-Mo合金的组织,力学性能和热加工性能。铸态的TiAl合金由γ/α_2片状体组成,γ和β相分布在菌落边界和层状界面上。形成了ω_0相的细小颗粒,在HIP处理期间从β相转变,并在热挤压后溶解。由于晶粒细化,β相的引入和ω_0相的消失,TiA1合金在热挤压后表现出改善的机械性能和出色的热加工性。铸态材料中出现的异常屈服应力现象在挤压状态下消失了,这归因于晶粒细化,降低了晶界对高温下晶内滑移的抵抗力。这些发现证明了引入少量β相以改善TiAl-Nb-Mo合金的热加工性能的好处,特别是在进行热处理以消除β相并提高机械性能时。

著录项

  • 来源
    《Materials Science and Engineering》 |2017年第29期|200-209|共10页
  • 作者单位

    National Key Laboratory for Precision Hot Processing of Metals & School of Materials Science and Engineering Harbin Institute of Technology, Harbin 150001, PR China;

    National Key Laboratory for Precision Hot Processing of Metals & School of Materials Science and Engineering Harbin Institute of Technology, Harbin 150001, PR China;

    National Key Laboratory for Precision Hot Processing of Metals & School of Materials Science and Engineering Harbin Institute of Technology, Harbin 150001, PR China;

    National Key Laboratory for Precision Hot Processing of Metals & School of Materials Science and Engineering Harbin Institute of Technology, Harbin 150001, PR China;

    National Key Laboratory for Precision Hot Processing of Metals & School of Materials Science and Engineering Harbin Institute of Technology, Harbin 150001, PR China;

    National Key Laboratory for Precision Hot Processing of Metals & School of Materials Science and Engineering Harbin Institute of Technology, Harbin 150001, PR China;

    National Key Laboratory for Precision Hot Processing of Metals & School of Materials Science and Engineering Harbin Institute of Technology, Harbin 150001, PR China;

    National Key Laboratory for Precision Hot Processing of Metals & School of Materials Science and Engineering Harbin Institute of Technology, Harbin 150001, PR China;

    Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-0241, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    γ-TiAl alloy; Extrusion; Heat treatment; Mechanical properties; Fracture mode;

    机译:γ-TiAl合金;挤压;热处理;机械性能断裂模式;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号