...
首页> 外文期刊>Materials Science and Engineering >Microstructure and mechanical properties of (B_4C+Al_2O_3)/Al composites designed for neutron absorbing materials with both structural and functional usages
【24h】

Microstructure and mechanical properties of (B_4C+Al_2O_3)/Al composites designed for neutron absorbing materials with both structural and functional usages

机译:(B_4C + Al_2O_3)/ Al复合材料的结构和力学性能,用于结构和功能用途的中子吸收材料

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

To meet the demand for the new generation of neutron absorber materials (NAMs) for the dry storage of the spent nuclear fuels, (B_4C + Al_2O_3)/Al composites were fabricated by powder metallurgy technique using ul-trafine Al powders. The composites designed with various fabricating parameters and fabricated at various sintering temperatures were characterized by electron microscopy and mechanically tested. The sample sintered at 450 ℃ shows the best strength-ductility balance at 350 ℃ (106.2 MPa in ultimate tensile strength and 9.6% in elongation). Addition of B_4C particles and increase of the Al_2O_3 film thickness could enhance the strength of the composites at room temperature but showed no obvious effect on the strength at 350 ℃. When sintering temperature of the composites increased from 450 ℃ to 550 ℃, the transformation of amorphous Al_2O_3 lamellae to γ-Al_2O_3 particles led to deterioration of the strength of the composites. Based on the analyses of both high-temperature deformation mechanism and strengthening mechanism, it was considered that the amorphous Al_2O_3 could pin the grain boundaries and prevent them from gliding, which was the main factor to significantly increase the high-temperature strength. Based on the results, a strategy to design the aluminium matrix NAMs with excellent high-temperature strength was proposed.
机译:为了满足用于干式乏核燃料干燥存储的新一代中子吸收材料(NAM)的需求,采用超细Al粉通过粉末冶金技术制备了(B_4C + Al_2O_3)/ Al复合材料。设计了具有各种制造参数并在各种烧结温度下制造的复合材料,并通过电子显微镜进行了表征并进行了机械测试。在450℃烧结的样品在350℃时具有最佳的强度-延展性平衡(极限抗拉强度为106.2 MPa,伸长率为9.6%)。 B_4C颗粒的添加和Al_2O_3膜厚度的增加可以提高复合材料的室温强度,但对350℃的强度没有明显影响。当复合材料的烧结温度从450℃提高到550℃时,非晶态Al_2O_3薄片转变为γ-Al_2O_3颗粒导致复合材料强度下降。通过对高温变形机理和强化机理的分析,认为非晶态的Al_2O_3可以束缚晶界并防止其滑动,这是显着提高高温强度的主要因素。在此基础上,提出了一种设计具有较高高温强度的铝基NAM的策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号