首页> 外文期刊>Materials Science and Engineering >Effect of matrix structures on TRIP effect and mechanical properties of low-C low-Si Al-added hot-rolled TRIP steels
【24h】

Effect of matrix structures on TRIP effect and mechanical properties of low-C low-Si Al-added hot-rolled TRIP steels

机译:基体组织对添加低碳低硅铝热轧TRIP钢的TRIP效应和力学性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

We applied different hot-rolling direct quenching and partitioning (HDQ&P) processes to a low-C low-Si Al-added steel and obtained eight TRW-assisted steels with different matrix structures, viz, martensite, ferrite/bainite, ferrite/martensite and ferrite/bainite/martensite. The microstructures were characterized using SEM, TEM and XRD. The mechanical properties were investigated by means of uniaxial tensile tests. Quasi in-situ tensile tests in combination with EBSD and microscopic digital image correlation (u-DIC) analyses were performed on microstructure regions containing ferrite, martensite and retained austenite to investigate the TRIP effect and composite effect. Considering both the chemical and strain partitioning among the structure components, we analyzed the specific influence of the matrix structures on the austenite stabilization, martensitic transformation of retained austenite and ductility of the material. The results show that the TRIP steel with a martensitic matrix exhibits high ultimate tensile strength (UTS) and yield ratio reaching up to 1200 MPa and 0.87, with the product of strength and elongation (PSE) of about 18000 MPa%. The introduction of 8%-25% (in area fraction) of ferrite leads to a decrease of the yield strength in 100-200 MPa, but without significant reduction of the UTS. The increase of the ferrite fraction to 30%-35% results in an obvious decrease of the UTS and yield ratio to about 950 MPa and 0.6. Retained austenite, with the amount of 14 vol %, was stabilized in the TRIP steel with a martensitic matrix. The introduction of ferrite (8%-35% in area fraction) and granular bainite can promote the carbon partitioning, thus enhancing the stabilization of retained austenite. The TRIP steel with a martensitic matrix exhibits a slight martensitic transformation of retained austenite because of the low deformability of the martensite. For TRIP steel with a matrix composed of ferrite and martensite, the low deformation compatibility of the soft and hard structure components also leads to a week martensitic transformation of retained austenite. The introduction of granular bainite can effectively improve the deformation uniformity and enhance the martensitic transformation during deformation. The TRIP effect and the composite effect of matrix structures jointly control the ductility of the TRIP steels. To optimize the ductility, we not only need to enhance the TRIP effect but also to improve the deformation compatibility of the matrix structures by tuning the structure components and their strength differences.
机译:我们对添加低碳低硅Al的钢应用了不同的热轧直接淬火和分区(HDQ&P)工艺,获得了八种TRW辅助钢,它们具有不同的基体结构,即,马氏体,铁素体/贝氏体,铁素体/马氏体和铁素体/贝氏体/马氏体。用SEM,TEM和XRD表征了微观结构。通过单轴拉伸试验研究了机械性能。在包含铁素体,马氏体和残余奥氏体的显微组织区域进行了准原位拉伸试验,并结合EBSD和显微数字图像相关(u-DIC)分析,以研究TRIP效应和复合效应。考虑到结构组分之间的化学和应变分配,我们分析了基体结构对奥氏体稳定化,残余奥氏体的马氏体转变和材料的延展性的特定影响。结果表明,具有马氏体基体的TRIP钢表现出高的极限拉伸强度(UTS),屈服比分别达到1200 MPa和0.87,强度和伸长率的乘积(PSE)约为18000 MPa%。引入8%-25%(以面积计)的铁素体会导致100-200 MPa的屈服强度降低,但不会显着降低UTS。铁素体分数增加到30%-35%导致UTS明显降低,屈服比降低到约950 MPa和0.6。在具有马氏体基体的TRIP钢中,残余奥氏体的含量为14%(体积)。铁素体(面积分数为8%-35%)和粒状贝氏体的引入可以促进碳的分配,从而增强残余奥氏体的稳定性。具有马氏体基体的TRIP钢由于马氏体的低可变形性而表现出残余奥氏体的轻微马氏体相变。对于具有由铁素体和马氏体组成的基体的TRIP钢,软,硬组织成分的低变形相容性也会导致残余奥氏体发生一周的马氏体相变。粒状贝氏体的引入可有效提高变形均匀性,增强变形过程中的马氏体相变。 TRIP效应和基体组织的复合效应共同控制TRIP钢的延展性。为了优化延展性,我们不仅需要增强TRIP效果,而且还需要通过调整结构部件及其强度差异来改善基体结构的变形相容性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号