...
首页> 外文期刊>Materials Science and Engineering >Nanostructured copper matrix composite with extraordinary strength and high electrical conductivity produced by asymmetric cryorolling
【24h】

Nanostructured copper matrix composite with extraordinary strength and high electrical conductivity produced by asymmetric cryorolling

机译:通过非对称冷轧制得的纳米结构铜基复合材料具有非凡的强度和高的导电性

获取原文
获取原文并翻译 | 示例

摘要

A novel method for fabricating nanostructured copper matrix composite with extraordinary strength and high electrical conductivity using casting, homogenization, and asymmetric cryorolling has been proposed. Microstructural observations were performed by optical microscopy (OM) and scanning electron microscopy (SEM) equipped by energy dispersive spectroscopy (EDS). A nanostructured (grain size < 100 nm) copper matrix composite due to the occurrence of discontinuous dynamic recrystallization (DDRX) and particle stimulated nucleation (PSN) mechanisms with a uniform dispersion of copper oxide particles achieved after 96% asymmetric cryorolling. The yield strength, ultimate tensile strength, and hardness of the 96% deformed copper matrix composite increased from 31.7 MPa, 206.2 MPa, and 29.4 HB (for the annealed sample) to 836.6 MPa, 841.7 MPa, and 103.4 HB, demonstrating 2539%, 308%, and 252% enhancement, respectively. The significant increase in strength and hardness was attributed to severe strain hardening, remarkable grain refinement, uniform dispersion of particles, and effective load transfer. At the same time, the improvement on yield and ultimate tensile strength did not cause serious deterioration in electrical conductivity so that the 96% deformed composite exhibited a high conductivity of 82.10% IACS (international annealed copper standard). Consequently, the copper matrix composite exhibited a good balance in strength and electrical conductivity. With increasing the thickness reduction, the number, and depth of dimples and the sharpness of tearing edges decreased and the failure mode changed from typical ductile fracture (for annealed, 30% and 60% rolled samples) to a combination of shear ductile and brittle fracture (for 90% and 96% deformed samples).
机译:提出了一种利用流延,均质化和非对称冷轧法制备具有非凡强度和高电导率的纳米结构铜基复合材料的新方法。通过配备有能量色散光谱仪(EDS)的光学显微镜(OM)和扫描电子显微镜(SEM)进行微观结构观察。由于发生了不连续的动态重结晶(DDRX)和粒子激发的成核(PSN)机制,在96%的不对称冷轧后获得了氧化铜颗粒的均匀分散,从而形成了纳米结构(晶粒尺寸小于100 nm)的铜基复合材料。 96%变形的铜基复合材料的屈服强度,极限拉伸强度和硬度从31.7 MPa,206.2 MPa和29.4 HB(对于退火样品)增加到836.6 MPa,841.7 MPa和103.4 HB,表明2539%,分别提高了308%和252%。强度和硬度的显着提高归因于严重的应变硬化,明显的晶粒细化,颗粒的均匀分散以及有效的载荷传递。同时,屈服强度和极限抗拉强度的提高并未引起电导率的严重降低,因此96%变形的复合材料显示出82.10%IACS(国际退火铜标准)的高电导率。因此,铜基复合材料在强度和导电性方面显示出良好的平衡。随着厚度减少的增加,凹痕的数量和深度以及撕裂边缘的锐度降低,并且破坏模式从典型的韧性断裂(对于退火的30%和60%轧制样品)变为剪切韧性断裂和脆性断裂的组合(对于90%和96%的变形样品)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号