...
首页> 外文期刊>Materials Science and Engineering >Compositional design of strong and ductile (tensile) Ti-Zr-Nb-Ta medium entropy alloys (MEAs) using the atomic mismatch approach
【24h】

Compositional design of strong and ductile (tensile) Ti-Zr-Nb-Ta medium entropy alloys (MEAs) using the atomic mismatch approach

机译:使用原子失配方法的强韧和延展性(拉伸)Ti-Zr-Nb-Ta中熵合金(MEA)的成分设计

获取原文
获取原文并翻译 | 示例
           

摘要

New non-equiatomic Ti(25+x)-Zr-25-Nb-25-Ta(25-x) (x = 0, 5, 10, 15, 20, in at%) medium entropy alloys (MEAs) have been designed using the atomic mismatch approach and fabricated through a conventional arc-melting process. These novel MEAs were derived from a recently developed equiatomic Ti-Zr-Nb-Ta MEA by gradually replacing its Ta content with Ti. Each non-equiatomic MEA solidified as a single solid-solution phase, which was characterised in detail and compared with Pandas (TM) simulation and empirical rules. Systematic tensile mechanical property data revealed the existence of a brittle-to-ductile transition for Ti-Zr-Nb-Ta MEAs, i.e., when 15 at% of Ta in the equiatomic Ti-25-Zr-25-Nb-25-Ta-25 MEA was replaced by Ti to become a Ti-40-Zr-25-Nb-25-Ta-10 MEA. The transition occurs corresponding to a small reduction in atomic mismatch from 4.72% to 4.65% but a signficant drop in nanoindentation hardness from 4.2 GPa to 3.5 GPa. In particular, both the as-cast Ti-40-Zr-2(5)-Nb-25-Ta-10 and Ti-45-Zr-25-Nb-25-Ta-5 MEAs exhibited excellent tensile strain to fracture ( 18%) and tensile strength ( 900 MPa) with much reduced density compared to the brittle Ti-25-Zr-25-Nb-25-Ta-25 MEA. They are both among a very small number of strong and ductile (tensile strain 15%) HEAs reported to date. Their tensile mechanical properties can be further tuned by adjusting the atomic mismatch of the resulting single solid-solution phase in conjunction with the improved understanding of the microstructures of these MEAs.
机译:新型非等原子Ti(25 + x)-Zr-25-Nb-25-Ta(25-x)(x = 0、5、10、15、20,at%)的中等熵合金(MEA)使用原子失配方法进行设计,并通过常规电弧熔化工艺制造。这些新颖的MEA源自最近开发的等原子Ti-Zr-Nb-Ta MEA,通过逐步将其Ta含量替换为Ti来实现。每个非等原子MEA都固化为一个固溶体相,对其进行了详细表征,并与Pandas(TM)模拟和经验规则进行了比较。系统的拉伸力学性能数据表明,Ti-Zr-Nb-Ta MEA存在脆性-延性转变,即当等原子的Ti-25-Zr-25-Nb-25-Ta中有15 at%的Ta时-25 MEA替换为Ti,成为Ti-40-Zr-25-Nb-25-Ta-10 MEA。发生转变的原因是原子错配从4.72%降低到4.65%,但纳米压痕硬度从4.2 GPa显着下降到3.5 GPa。尤其是铸态的Ti-40-Zr-2(5)-Nb-25-Ta-10和Ti-45-Zr-25-Nb-25-Ta-5 MEA均表现出优异的断裂拉伸应变(与脆性的Ti-25-Zr-25-Nb-25-Ta-25 MEA相比,密度(> 18%)和拉伸强度(> 900 MPa)大大降低。迄今为止,它们都属于极少数的强而有延展性(拉伸应变> 15%)的HEA。通过调节所得单固溶相的原子错配以及对这些MEA微观结构的更好理解,可以进一步调节其拉伸机械性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号