首页> 外文期刊>Materials Chemistry and Physics. >Characterization of Fe- and Mn-doped GDC for low-temperature processing of solid oxide fuel cells
【24h】

Characterization of Fe- and Mn-doped GDC for low-temperature processing of solid oxide fuel cells

机译:固态氧化物燃料电池低温加工中掺铁和掺锰的GDC的表征

获取原文
获取原文并翻译 | 示例
           

摘要

This study reports the development of a low-temperature solid oxide fuel cell (SOFC) based on gadolinium-doped-ceria (Gd_(0.1)Ce_(0.9)O_(1.95), GDC) electrolyte and copper anode. Single cells were fabricated by sintering of all three SOFC components - electrolyte, copper-based anode and composite cathode - in a single step at low temperature (900 ℃). Low-temperature sintering was necessitated due to the low melting point of copper and was achieved by the addition of transition metal oxides (TMOs) (Fe and Mn) to the GDC electrolyte. The sinterability of TMO-doped GDC samples was evaluated over 900-1400℃. Key functional properties - density, mechanical strength and electrical conductivity - of the doped GDC were determined. Acceptable levels of density (>95% of theoretical) and mechanical strength were achieved for the samples sintered at 900 ℃. Scanning electron micrographs (SEMs) of the doped-GDC samples showed no open pores at the lowest sintering temperature of 900 ℃ The electrical conductivities of the doped-GDC samples sintered at 900 ℃ at a test temperature of 650 ℃ were determined to be 0.0067 S cm~(-1) and 0.0095 cm~(-1) for Fe- and Mn-doped samples, respectively, but lower than that of undoped-GDC sintered at 1100℃ (σ_(650℃) = 0.027 S cm~(-1)). Single cells were prepared by slurry painting of CuO-GDC anode on one side of TMO-doped GDC electrolyte and Gd_(0.1)Ce_(0.9)O_(1.95) (GDC)-La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_3 (LSCF) composite cathode on the other side of the electrolyte followed by co-sintering of all the three layers at 900 ℃. The performance of the single cells was evaluated over 650-700 ℃ using humidified hydrogen as fuel and air as oxidant.
机译:这项研究报告了基于solid掺杂二氧化铈(Gd_(0.1)Ce_(0.9)O_(1.95),GDC)电解质和铜阳极的低温固体氧化物燃料电池(SOFC)的开发。通过在低温(900℃)下一步烧结所有三种SOFC成分(电解质,铜基阳极和复合阴极)来制造单电池。由于铜的熔点低,因此需要进行低温烧结,这是通过向GDC电解质中添加过渡金属氧化物(TMO)(铁和锰)来实现的。在900-1400℃范围内评估了TMO掺杂GDC样品的可烧结性。确定了掺杂的GDC的关键功能特性-密度,机械强度和电导率。在900℃烧结的样品达到了可接受的密度(理论值的> 95%)和机械强度。掺杂的GDC样品的扫描电子显微照片(SEM)在最低烧结温度900℃下没有开孔。经测试,在650℃的测试温度下于900℃烧结的掺杂GDC样品的电导率为0.0067 S Fe和Mn掺杂样品的cm〜(-1)和0.0095 cm〜(-1),但低于1100℃烧结的未掺杂GDC的样品(σ_(650℃)= 0.027 S cm〜(- 1))。通过在TMO掺杂的GDC电解质和Gd_(0.1)Ce_(0.9)O_(1.95)(GDC)-La_(0.6)Sr_(0.4)Co_(0.2)的一侧对CuO-GDC阳极进行浆涂来制备单电池。电解质另一侧的Fe_(0.8)O_3(LSCF)复合阴极,然后在900℃共烧结三层。使用加湿的氢气作为燃料和空气作为氧化剂,在650-700℃范围内评估了单电池的性能。

著录项

  • 来源
    《Materials Chemistry and Physics.》 |2009年第3期|728-734|共7页
  • 作者单位

    Queen's-RMC Fuel Cell Research Centre, Queen's University, Kingston, Ontario, Canada K7L 5L9;

    Queen's-RMC Fuel Cell Research Centre, Queen's University, Kingston, Ontario, Canada K7L 5L9 Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada K7L 3N6;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    doped GDC; conductivity; co-firing; cell performance;

    机译:掺杂的GDC;电导率共烧电池性能;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号