...
首页> 外文期刊>Materials & design >Optimization based simulation of self-expanding Nitinol stent
【24h】

Optimization based simulation of self-expanding Nitinol stent

机译:基于优化的自膨胀镍钛诺支架仿真

获取原文
获取原文并翻译 | 示例

摘要

Self-expanding Nitinol (nickel-titanium alloy) stents are tubular, often mesh like structure, which are expanded inside a diseased (stenosed) artery segment to restore blood flow and keep the vessel open following angioplasty. The super-elastic and shape memory properties of Nitinol reduce the risk of damage to the stent both during delivery into the body and due to accidents while in operation. However, as Nitinol stents are subjected to a long-term cyclic pulsating load due to the heart beating (typically 4 × 10~7 -cycles/year) fatigue fracture may occur. One of the major design requirements in medical implants is the device lifetime or, in engineering terms, fatigue life. In order to improve the mechanical properties of Nitinol stents, at first, a reliable procedure of finite element analysis (FEA) is established to provide quantitative measures of the stent's strain amplitude and mean strain which are generated by the cyclic pulsating load. This allows prediction of the device's life and optimization of stent designs. Secondly, the objective is to optimize the stent design by reducing the strain amplitude and mean strain over the stent, which are generated by the cyclic pulsating load. An optimization based simulation methodology was developed in order to improve the fatigue endurance of the stent. The design optimization approach is based on the Response Surface Method (RSM), which is used in conjunction with Kriging interpolation and Sequential Quadratic Programming (SQP) algorithm.
机译:自膨胀镍钛诺(镍钛合金)支架是管状的,通常是网状结构,在病变(狭窄)的动脉段内膨胀,以恢复血液流动并在血管成形术后保持血管开放。镍钛诺的超弹性和形状记忆特性可降低在将支架释放到体内以及在操作过程中因意外事故而损坏支架的风险。但是,由于心脏跳动(通常为4×10〜7-7个周期/年),镍钛诺支架承受长期的周期性脉动负荷时,可能会发生疲劳断裂。医疗植入物的主要设计要求之一是设备的使用寿命,或者就工程而言,是疲劳寿命。为了改善镍钛诺支架的机械性能,首先,建立了可靠的有限元分析程序(FEA),以定量测量由循环脉动载荷产生的支架的应变幅度和平均应变。这可以预测设备的寿命并优化支架设计。其次,目标是通过减小由循环脉动载荷产生的应变幅度和支架上的平均应变来优化支架设计。为了提高支架的疲劳强度,开发了基于优化的仿真方法。设计优化方法基于响应面方法(RSM),该方法与Kriging插值法和顺序二次规划(SQP)算法结合使用。

著录项

  • 来源
    《Materials & design》 |2013年第9期|917-928|共12页
  • 作者单位

    Advanced Material and Structure Department, Public Research Centre Henri Tudor, 66 Rue de Luxembourg, L-4002 Esch-sur-Alzette, Luxembourg;

    Research Institute on Transportation, Energy and Society IRTES (EA 7274), M3M Laboratory, Universite de Technologie de Belfort-Montbeliard, UTBM, 90010 Belfort Cedex, France;

    Advanced Material and Structure Department, Public Research Centre Henri Tudor, 66 Rue de Luxembourg, L-4002 Esch-sur-Alzette, Luxembourg;

    Advanced Material and Structure Department, Public Research Centre Henri Tudor, 66 Rue de Luxembourg, L-4002 Esch-sur-Alzette, Luxembourg;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Nitinol stent; Shape memory; Super-elastic; Fatigue life prediction; Finite element analysis; Optimization;

    机译:镍钛诺支架;形状记忆;超弹性疲劳寿命预测;有限元分析;优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号