...
首页> 外文期刊>Materials & design >Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder
【24h】

Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder

机译:铝合金粉末选择性激光熔融增材制造过程中热行为的参数分析

获取原文
获取原文并翻译 | 示例
           

摘要

Simulation of temperature fields during selective laser melting (SLM) additive manufacturing of AlSilOMg powder was performed using the finite element method (FEM). The effects of laser power and scan speed on the SLM thermal behavior were investigated. It showed that the cooling rate of the molten pool elevated slightly from 2.13 × 10~6 ℃/s to 2.97 × 10~6 ℃/s as the laser power increased from 150W to 300W, but it enhanced significantly from 1.25 × 10~6℃/s to 6.17 × 10~6℃/s as the scan speed increased from 100 mm/s to 400 mm/s. The combination of a low laser power (200 W) and a high scan speed (400 mm/s) yielded a low temperature (1059 ℃) and an extremely short liquid lifetime (0.19 ms), resulting in the poor wettability and occurrence of micropores in SLM-produced parts. The temperature gradient along the depth direction of the molten pool increased considerably from 10.6 ℃/μm to 21.7 ℃/μm as the laser power elevated from 150 W to 300 W, while it decreased slightly from 14.9 ℃/μm to 13.5 ℃/μm as the scan speed increased from 100 mm/s to 400 mm/s. The proper molten pool width (111.4 μm) and depth (67.5 μm) were obtained for a successful SLM process using the laser power of 250 W and scan speed of 200 mm/s. SLM of AlSi10Mg powder was also experimentally performed using different laser processing conditions and the microstructures of the SLM-fabricated samples were investigated to verify the reliability of the physical model. A sound metallurgical bonding between the neighboring fully dense layers was achieved at laser power of 250 W and scan speed of 200 mm/s, due to the larger molten pool depth (67.5 μm) as relative to the layer thickness (50 μm).
机译:使用有限元方法(FEM)对AlSilOMg粉末进行选择性激光熔化(SLM)增材制造过程中的温度场进行了模拟。研究了激光功率和扫描速度对SLM热行为的影响。结果表明,随着激光功率从150W增加到300W,熔池的冷却速率从2.13×10〜6℃/ s略微提高到2.97×10〜6℃/ s,但从1.25×10〜6显着提高。扫描速度从100 mm / s增加到400 mm / s时,℃/ s为6.17×10〜6℃/ s。低激光功率(200 W)和高扫描速度(400 mm / s)的结合产生了低温(1059℃)和极短的液体寿命(0.19 ms),从而导致润湿性差和出现微孔在SLM生产的零件中。随着激光功率从150 W增加到300 W,沿熔池深度方向的温度梯度从10.6℃/μm显着增加到21.7℃/μm,而当激光功率从14.9℃/μm减小到13.5℃/μm时,温度梯度逐渐减小。扫描速度从100 mm / s增加到400 mm / s。对于成功的SLM工艺,使用250 W的激光功率和200 mm / s的扫描速度,可以获得适当的熔池宽度(111.4μm)和深度(67.5μm)。还使用不同的激光加工条件对AlSi10Mg粉末进行了SLM实验,并研究了SLM制成的样品的微观结构,以验证物理模型的可靠性。由于相对于层厚(50μm)较大的熔池深度(67.5μm),在250 W的激光功率和200 mm / s的扫描速度下,可以在相邻的完全致密层之间实现良好的冶金结合。

著录项

  • 来源
    《Materials & design》 |2014年第11期|856-867|共12页
  • 作者

    Yali Li; Dongdong Gu;

  • 作者单位

    College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016, PR China Institute of Additive Manufacturing (3D Printing), Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016, PR China;

    College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016, PR China Institute of Additive Manufacturing (3D Printing), Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016, PR China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Additive manufacturing; Selective laser melting; Numerical simulation; Thermal behavior; Aluminum alloy;

    机译:添加剂制造;选择性激光熔化;数值模拟热行为;铝合金;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号