首页> 外文期刊>Materials & design >Computationally efficient finite difference method for metal additive manufacturing: A reduced-order DFAM tool applied to SLM
【24h】

Computationally efficient finite difference method for metal additive manufacturing: A reduced-order DFAM tool applied to SLM

机译:用于金属增材制造的计算有效有限差分方法:应用于SLM的降阶DFAM工具

获取原文
获取原文并翻译 | 示例
           

摘要

Metal Additive Manufacturing (MAM) allows the production of complex lattice structures that exceed the manufacturing capability of traditional processes. However, the MAM process is highly complex, including: transient thermo-mechanical loading, spatially and temporally transient boundary conditions and multi-scale affects. Furthermore, MAM is subject to significant experimental and statistical uncertainties. Consequently, the MAM process is poorly understood and build-process simulations are computationally demanding; this limits the availability of Design for Additive manufacturing (DFAM) tools, and necessitates experimental validation for commercial MAM applications. This research develops a novel finite difference method (FDM) simulation of the MAM temperature field that is based on a computationally efficient 1D transient tri-diagonal system of equations, and reduces data generation effort by the reuse of existing MAM production data. The 1D simulation is particularly suited to lattice geometries due to the slenderness of lattice strut elements. The reduced-order simulation method developed in this research provides a timely and useful DFAM tool that enables qualitative design insight early in the design phase and pre-production validation. The proposed method is validated by comparison to existing analytical results, numerical results and by application to a titanium and aluminium lattice structures manufactured by a commercial Selective Laser Melting (SLM) process. (C) 2017 Elsevier Ltd. All rights reserved.
机译:金属增材制造(MAM)允许生产超出传统工艺制造能力的复杂晶格结构。但是,MAM过程非常复杂,包括:瞬态热机械载荷,时空瞬态边界条件和多尺度影响。此外,MAM受到重大的实验和统计不确定性。因此,对MAM流程了解甚少,并且对构建过程的仿真也有很高的计算要求。这限制了增材制造设计(DFAM)工具的可用性,并且需要对商用MAM应用进行实验验证。这项研究开发了一种新颖的MAM温度场有限差分法(FDM)仿真,该仿真基于计算效率高的一维瞬态三对角方程组,并通过重用现有MAM生产数据来减少数据生成工作。由于晶格支撑元件的细长性,一维模拟特别适合于晶格几何形状。本研究中开发的降阶仿真方法提供了一种及时且有用的DFAM工具,该工具可在设计阶段的早期进行定性设计洞察并进行生产前验证。通过与现有的分析结果,数值结果进行比较,并通过将其应用到通过商业选择性激光熔融(SLM)工艺制造的钛和铝晶格结构中,验证了所提出的方法。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号