首页> 外文期刊>Materials & design >Microstructure engineering by dispersing nano-spheroid cementite in ultrafine-grained ferrite and its implications on strength-ductility relationship in high carbon steel
【24h】

Microstructure engineering by dispersing nano-spheroid cementite in ultrafine-grained ferrite and its implications on strength-ductility relationship in high carbon steel

机译:在超细晶粒铁素体中分散纳米球状渗碳体的显微组织工程及其对高碳钢强度-延性关系的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Thermo-mechanical processing is performed to engineer the microstructure comprising of nano-spheroidized cementites in ultrafine-grained ferrite in high carbon steel to enhance strength-ductility relationship. Spheroidization is achieved through heavywarmrolling (4-passes of 30% reduction at 823 K and 873 K) followed by extended annealing (1 h and 2 h) at the respective deformation temperatures. The influence of annealing temperature and time on the evolution of carbide precipitates, the extent of spheroidization and ferrite softening is investigatedemploying scanning electronmicroscopy, electron back scatter diffraction and transmission electron microscopy techniques. A near-complete spheroidization is achieved following heavy warm rolling and subsequent annealing for 2 h at 873 K (WR873K-2H). Although ferrite grain size increases with time and temperature of annealing, it ceases to cross the ultrafine regime (470-750 nm) due to the pinning effect of the carbides that restricts the migration of ferrite grain boundaries. A simultaneous increase in strength and ductility is achieved following heavy warm rolling and subsequent annealing for 1 to 2 h at 873 K. Maximum elongation (similar to 30%) is achieved in the WR873-2H specimen in contrast to similar to 20% elongation in as-received specimen. Such an increase in ductility is due to the near-complete spheroidization as revealed by the ductile mode of fracture in fractrographic analysis. (C) 2017 Elsevier Ltd. All rights reserved.
机译:进行热机械加工以设计包括高碳钢中超细晶粒铁素体中的纳米球化渗碳体的微观结构,以增强强度-延性关系。通过大量热轧(在823 K和873 K处进行4道次30%的降低),然后在相应的变形温度下进行延长退火(1 h和2 h),可以实现球化。利用扫描电子显微镜,电子背散射衍射和透射电子显微镜技术研究了退火温度和时间对碳化物析出,球化程度和铁素体软化程度的影响。经过重度热轧和随后在873 K(WR873K-2H)退火2 h,实现了接近完全的球化。尽管铁素体晶粒尺寸随退火时间和温度的增加而增加,但由于碳化物的钉扎效应限制了铁素体晶粒边界的迁移,铁素体晶粒停止穿过超细态(470-750 nm)。经过重度热轧并随后在873 K下退火1至2 h,强度和延展性同时提高。WR873-2H试样达到最大伸长率(约30%),而WR873-2H试样则达到20%的伸长率。收到的标本。延展性的这种提高是由于几乎所有的球化作用所致,如在断裂分析中断裂的延展性模式所揭示的那样。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号