...
首页> 外文期刊>IEEE transactions on components, packaging, and manufacturing technology. Part A >An overview of high-temperature electronic device technologies and potential applications
【24h】

An overview of high-temperature electronic device technologies and potential applications

机译:高温电子设备技术及其潜在应用概述

获取原文
获取原文并翻译 | 示例
           

摘要

High-temperature electronics applications are found in combustion systems, well logging, and industrial processes, air stagnation points in supersonic aircraft, vehicle brakes, nuclear reactors, and dense electronic packages. We summarize physical effects and materials issues important for reliable operation of semiconductor device technologies at high temperatures (<125/spl deg/C). We review the high-temperature potential of Si, GaAs, other III-V compounds, and SiC. For completeness, we also comment on nitrides, diamond, and vacuum microelectronics. We conclude that Si on insulator (SOI) technology can be developed readily for small signal operation up to about 300/spl deg/C. There is some ongoing work in this area. GaAs offers little advantage over Si because of poor device isolation and the lack of reliable contacts above 250/spl deg/C. Other III-V compounds could be developed for operation to /spl sim/600/spl deg/C, using processes similar to those used for optoelectronics. There may be a market niche for III-V power devices above 200/spl deg/C. There is considerable activity in semiconducting SiC, and device functionality has been demonstrated above 600/spl deg/C. SiC is promising for operation above 300/spl deg/C, and for power devices at frequencies from dc to /spl sim/10 GHz, but it faces numerous challenges to achieve manufacturable status. We attempt to match technologies with application areas.
机译:在燃烧系统,测井和工业过程,超音速飞机的空气停滞点,车辆制动器,核反应堆和密集电子组件中发现高温电子应用。我们总结了物理效应和材料问题,这些问题对于半导体器件技术在高温下(<125 / spl deg / C)的可靠运行非常重要。我们回顾了Si,GaAs,其他III-V化合物和SiC的高温潜力。为了完整起见,我们还评论了氮化物,金刚石和真空微电子学。我们得出的结论是,绝缘体上的硅(SOI)技术可以轻松开发用于小信号操作,最高可达300 / spl deg / C。这方面正在进行一些工作。由于器件隔离差以及在250 / spl deg / C以上都缺乏可靠的接触,GaAs与Si相比优势不大。可以开发其他III-V化合物,使其在/ spl sim / 600 / spl deg / C的温度下运行,所使用的工艺与光电子学类似。高于200 / spl deg / C的III-V功率器件可能会有市场利基。半导体SiC具有相当大的活​​性,并且在600 / spl deg / C以上已证明了器件的功能。 SiC有望在300 / spl deg / C以上的温度下工作,并有望在从dc到/ spl sim / 10 GHz的频率下用于功率器件,但要实现可制造的状态,SiC面临许多挑战。我们尝试将技术与应用领域进行匹配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号