...
首页> 外文期刊>Machine Learning >The kernel Kalman rule: Efficient nonparametric inference by recursive least-squares and subspace projections
【24h】

The kernel Kalman rule: Efficient nonparametric inference by recursive least-squares and subspace projections

机译:内核Kalman规则:通过递归最小二乘和子空间投影进行有效的非参数推理

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Enabling robots to act in unstructured and unknown environments requires versatile state estimation techniques. While traditional state estimation methods require known models and make strong assumptions about the dynamics, such versatile techniques should be able to deal with high dimensional observations and non-linear, unknown system dynamics. The recent framework for nonparametric inference allows to perform inference on arbitrary probability distributions. High-dimensional embeddings of distributions into reproducing kernel Hilbert spaces are manipulated by kernelized inference rules, most prominently the kernel Bayes' rule (KBR). However, the computational demands of the KBR do not scale with the number of samples. In this paper, we present two techniques to increase the computational efficiency of non-parametric inference. First, the kernel Kalman rule (KKR) is presented as an approximate alternative to the KBR that estimates the embedding of the state based on a recursive least squares objective. Based on the KKR we present the kernel Kalman filter (KKF) that updates an embedding of the belief state and learns the system and observation models from data. We further derive the kernel forward backward smoother (KFBS) based on a forward and backward KKF and a smoothing update in Hilbert space. Second, we present the subspace conditional embedding operator as a sparsification technique that still leverages from the full data set. We apply this sparsification to the KKR and derive the corresponding sparse KKF and KFBS algorithms. We show on nonlinear state estimation tasks that our approaches provide a significantly improved estimation accuracy while the computational demands are considerably decreased.
机译:使机器人能够在非结构化和未知环境中运行需要多种状态估计技术。尽管传统的状态估计方法需要已知的模型并对动力学做出强有力的假设,但这种通用技术应该能够处理高维观测和非线性,未知的系统动力学。非参数推断的最新框架允许对任意概率分布进行推断。分布在复制核Hilbert空间中的高维嵌入是通过核化推理规则(最著名的是核贝叶斯规则(KBR))来操纵的。但是,KBR的计算要求不随样本数量而定。在本文中,我们提出了两种提高非参数推理的计算效率的技术。首先,将内核卡尔曼规则(KKR)作为KBR的近似替代方案,后者基于递归最小二乘目标估计状态的嵌入。基于KKR,我们提出了内核Kalman滤波器(KKF),它可以更新置信状态的嵌入并从数据中学习系统和观察模型。我们进一步基于向前和向后KKF以及希尔伯特空间中的平滑更新来导出内核向前向后平滑器(KFBS)。其次,我们将子空间条件嵌入算子作为一种稀疏化技术提出,该技术仍然可以利用完整数据集的优势。我们将此稀疏化应用于KKR,并推导了相应的稀疏KKF和KFBS算法。我们在非线性状态估计任务上表明,我们的方法可显着提高估计精度,同时大大减少了计算需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号