首页> 外文期刊>Lithology and mineral resources >Strontium Isotope Composition of the Lower Proterozoic Carbonate Concretions: The Zaonega Formation, Southeast Karelia
【24h】

Strontium Isotope Composition of the Lower Proterozoic Carbonate Concretions: The Zaonega Formation, Southeast Karelia

机译:下元古代碳酸盐岩沉积物的锶同位素组成:卡累利阿东南部的Zaonega组

获取原文
获取原文并翻译 | 示例
       

摘要

The middle part of the volcanosedimentary Zaonega Formation of the Ludikovian Suprahorizon (approximately 2.0 Ga) includes large carbonates concretions and lenses in shungite layers. Carbonate lenses and concretions are primarily elongated and flattened, and their thickness varies from tens of centimeters to a few meters. Some lenses retain relicts of lamination. Concretions are composed of calcite or dolomite. They contain abundant organic matter, as well as mica, talc, chlorite, quartz, and pyrite crystals. The calcite concretions contain some dolomite admixture (Mg/Ca = 0.011-0.045) and differ from sedimentary limestones by a low Fe/Mn value (0.3-2.1). The Sr content is as much as 385-505 μg/g in most samples and is low (86 μg/g) only in one sample. The Rb-Sr systematics of carbonate concretions was studied with the stepwise dissolution procedure, which included processing with the ammonium acetate solution (AMA fraction) to partially remove the secondary carbonate material, with dissolution of the residue in acetic acid (ACA fraction). In individual calcite samples, discrepancy between the measured ~(87)Sr/~(86)Sr values in the AMA and ACA calcite fractions shows a variation range of 0.0008-0.0033. The initial ~(87)Sr/~(86)Sr ratio in the ACA fractions of the studied samples varies from 0.7053 to 0.7162. The ratio shows a positive correlation with Mg/Ca and the proportion of siliciclastic admixture and negative correlation with the Mn content. The concretions were formed when the sediments subsided, probably, during the transition from a zone with "mild" reductive conditions to zones with active sulfate reduction and methanogenesis. In the sulfate reduction zone, where most pyrite-bearing concretions were formed, the sediment was not geochemically exchaged with the bottom water and was evolved into a closed or semiclosed system. Processes of diagenesis in this zone promoted the release of the radiogenic ~(87)Sr from the associated siliciclastic minerals, resulting in growth of the initial ~(87)Sr/~(86)Sr in concretions up to 0.7108-0.7162. Some calcite concretions, which lacked pyrite (or contained its minimal amount) were likely formed in a thin surficial sediment layer located above the sulfate reduction zone. Therefore, they precipitated Sr in isotope equilibrium with Sr of the bottom water. However, large concretions and carbonate lenses with an insignificant siliciclastic admixture could retain the signature of early diagenesis or even sedimentation. The initial ~(87)Sr/~(86)Sr ratio in one of such samples with the siliciclastic admixture of 6.2% makes it possible to estimate the maximal value of this ratio (0.7053) in the Ludikovian paleobasin.
机译:Ludikovian Suprahorizo​​n(约2.0 Ga)的火山成岩沉积的Zaonega组的中间部分包括大型碳酸盐岩胶结物和晶石层。碳酸盐透镜和混凝土主要是拉长和变平的,它们的厚度从几十厘米到几米不等。某些镜片保留有层压痕迹。混凝土由方解石或白云石组成。它们含有丰富的有机物,以及云母,滑石,亚氯酸盐,石英和黄铁矿晶体。方解石固结物含有一些白云石混合物(Mg / Ca = 0.011-0.045),与沉积石灰石的区别在于Fe / Mn值低(0.3-2.1)。大多数样品中的Sr含量高达385-505μg/ g,仅一个样品中的Sr含量低(86μg/ g)。用逐步溶解程序研究了碳酸盐固结物的Rb-Sr系统,包括用乙酸铵溶液(AMA馏分)处理以部分除去仲碳酸盐物质,并将残余物溶解在乙酸中(ACA馏分)。在单个方解石样品中,AMA和ACA方解石组分中测得的〜(87)Sr /〜(86)Sr值之间的差异显示出0.0008-0.0033的变化范围。研究样品的ACA馏分中的初始〜(87)Sr /〜(86)Sr比在0.7053至0.7162之间变化。该比例与Mg / Ca呈正相关,与硅弹混合物的比例呈正相关,与Mn含量呈负相关。当沉积物从具有“温和”还原条件的区域过渡到具有活跃硫酸盐还原作用和甲烷生成作用的区域时,沉积物平息时形成了凝结物。在硫酸盐还原带,形成了大多数含黄铁矿的凝结物,该沉积物没有用底水进行地球化学交换,而是演化为封闭或半封闭系统。该区的成岩作用促进了放射性硅〜(87)Sr从相关的硅质碎屑矿物中释放出来,导致最初〜(87)Sr /〜(86)Sr在固结物中的生长高达0.7108-0.7162。一些缺少黄铁矿(或含有少量黄铁矿)的方解石凝结物可能在硫酸盐还原带上方的薄表层沉积物中形成。因此,它们使Sr与底部水的Sr处于同位素平衡状态。但是,大型的凝结岩和碳酸盐晶状体具有微不足道的硅质碎屑混合物,可以保留早期成岩作用甚至沉积的特征。硅质弹混合物为6.2%的此类样品之一的初始〜(87)Sr /〜(86)Sr之比使得有可能估算Ludikovian古盆地中该比值的最大值(0.7053)。

著录项

  • 来源
    《Lithology and mineral resources》 |2012年第4期|p.319-333|共15页
  • 作者单位

    Institute of Precambricm Geology and Geochronology (1PGG), Russian Academy of Sciences,nab. Makarova 2, St. Petersburg, 199034 Russia;

    Institute of Precambricm Geology and Geochronology (1PGG), Russian Academy of Sciences,nab. Makarova 2, St. Petersburg, 199034 Russia;

    Geological Survey of Norway, Leiv Eirikssons vei 39, N-7491 Trondheim, Norway;

    Institute of Precambricm Geology and Geochronology (1PGG), Russian Academy of Sciences,nab. Makarova 2, St. Petersburg, 199034 Russia;

    Institute of Precambricm Geology and Geochronology (1PGG), Russian Academy of Sciences,nab. Makarova 2, St. Petersburg, 199034 Russia;

    Institute of Precambricm Geology and Geochronology (1PGG), Russian Academy of Sciences,nab. Makarova 2, St. Petersburg, 199034 Russia;

  • 收录信息 美国《科学引文索引》(SCI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:31:55

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号