首页> 外文期刊>Life Sciences in Space Research >CRaTER observations and permissible mission duration for human operations in deep space
【24h】

CRaTER observations and permissible mission duration for human operations in deep space

机译:在深空中的人类运营中的火山口观察和允许的任务持续时间

获取原文
获取原文并翻译 | 示例
           

摘要

Prolonged exposure to the galactic cosmic ray (GCR) environment is a potentially limiting factor for manned missions in deep space. Evaluating the risk associated with the expected GCR environment is an essential step in planning a deep space mission. This requires an understanding of how the local interstellar spectrum is modulated by the heliospheric magnetic field (HMF) and how observed solar activity is manifested in the HMF over time. While current GCR models agree reasonably well with measured observations of GCR flux on the first matter, they must rely on imperfect or loose correlations to describe the latter. It is more accurate to use dose rates directly measured by instruments in deep space to quantify the GCR condition for a given period of time. In this work, dose rates observed by the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument are used to obtain the local GCR intensity and composition as a function of time. A response function is constructed that relates observed dose rates to solar modulation potential using a series of Monte Carlo radiation transport calculations. The record of observed solar modulation potential vs. time is then used to calculate a recent historical record of permissible mission duration (PMD) according to NASA's permissible exposure limits (PEL). Tables are provided for extreme values of PMD. Additional tables include risk of exposure-induced death (at upper 95% confidence interval) accrual rates and NASA effective dose rates as a function of solar modulation potential, astronaut age, sex, and shielding thickness. The significance of the PMD values reported in relation to likely transit duration requirements for future exploration missions is discussed. There is general agreement between CRaTER observations and the prescription of solar modulation vs. time given by the Badhwar–O'Neill 2014 GCR model. However, CRaTER observations do capture the effects of significant heliospheric transients, among other features, that are missing from the prescription of solar modulation potential vs. time.
机译:长期暴露于银河系宇宙射线(GCR)环境是载有载有令人难以限制的因素的深层空间。评估与预期的GCR环境相关的风险是规划深度空间任务的重要一步。这需要了解局部星际谱如何被旋光器磁场(HMF)调节如何以及观察到的太阳能随时间在HMF中表现出的。虽然当前的GCR模型与第一种物质上的GCR通量的测量观察相同,但它们必须依赖于不完美或松散的相关性来描述后者。使用深度空间中的仪器直接测量的剂量率更准确地使用给定的时间段来量化GCR条件。在这项工作中,宇宙射线望远镜观察到辐射(火山口)仪器的影响的剂量率用于获得局部GCR强度和组合物作为时间的函数。构建了一种响应功能,其使用一系列蒙特卡罗辐射传输计算将观察到的剂量率与太阳调节电位相关。然后,观察到的太阳能调制电位与时间的记录用于根据NASA的允许曝光限制(PEL)计算允许的任务持续时间(PMD)的最近历史记录。为PMD的极值提供表格。额外表包括暴露诱导的死亡风险(以上95%置信区间)归零率和NASA有效剂量率作为太阳调节潜力,宇航员年龄,性别和屏蔽厚度的函数。讨论了关于未来勘探任务的可能过境持续时间要求的PMD值的重要性。火山口观察和太阳能调制的处方之间存在普遍同意.Badhwar-o'neill 2014 GCR模型给出的太阳能调制与时间。然而,火山口观察结果确实捕获了显着的旋光器瞬变以及其他特征的影响,这些功能在太阳调制潜在与时间的处方中缺失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号