...
首页> 外文期刊>The Korean journal of chemical engineering >Kinetic modeling and dynamic simulation for the catalytic wet air oxidation of aqueous ammonia to molecular nitrogen
【24h】

Kinetic modeling and dynamic simulation for the catalytic wet air oxidation of aqueous ammonia to molecular nitrogen

机译:氨水催化湿空气氧化为分子氮的动力学建模和动力学模拟

获取原文
获取原文并翻译 | 示例
           

摘要

A kinetic model for the catalytic wet air oxidation of aqueous ammonia over Ru/TiO2 catalyst was developed considering the consecutive reaction steps as follows: (i) formation of active oxygen sites O* by the dissociative adsorption of aqueous O-2 on the catalyst, (ii) oxidation of aqueous NH3 by the reaction with three O* sites to produce HNO2, (iii) aqueous phase dissociation of HNO2 into H+ and NO (2) (-) , (iv) formation of NH (4) (+) by the association of NH3 with the HNO2-dissociated H+, (v) formation of N-2 by the aqueous phase reaction between NO (2) (-) and NH (4) (+) , (vi) formation of NO3 by the reaction of NO (2) (-) with an O* site. For each reaction step, a rate equation was derived and its kinetic parameters were optimized by experimental data fitting. Activation energies for the reactions (ii), (v), and (vi) were 123.1, 76.7, and 54.5 kJ/mol, respectively, suggesting that the oxidation reaction of aqueous NH3 to HNO2 was a ratedetermining step. From the simulation using the kinetic parameters determined, the initial pH adjustment of the ammonia solution proved to be critical for determining the oxidation product selectivity between desirable N-2 and undesirable NO (3) (-) as well as the degree of oxidation conversion of ammonia.
机译:考虑以下连续反应步骤,建立了Ru / TiO2催化剂上氨水催化湿式空气氧化的动力学模型:(i)通过在催化剂上将O-2分解吸附而形成活性氧位点O *, (ii)通过与三个O *位反应生成HNO2氧化NH3水溶液,(iii)HNO2发生水相分解为H +和NO(2)(-),(iv)NH(4)(+)形成通过NH3与HNO2离解的H +的缔合,(v)通过NO(2)(-)和NH(4)(+)之间的水相反应形成N-2,(vi)通过NO(2)形成NO3 NO(2)(-)与O *位反应。对于每个反应步骤,导出了一个速率方程,并通过实验数据拟合优化了其动力学参数。反应(ii),(v)和(vi)的活化能分别为123.1、76.7和54.5 kJ / mol,表明NH3水溶液氧化为HNO2是一个确定的步骤。从使用确定的动力学参数进行的模拟中,氨溶液的初始pH调节被证明对于确定理想的N-2和不良的NO(3)(-)之间的氧化产物选择性以及H2O的氧化转化程度至关重要。氨。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号