...
首页> 外文期刊>Knowledge-Based Systems >DP-GMM clustering-based ensemble learning prediction methodology for dam deformation considering spatiotemporal differentiation
【24h】

DP-GMM clustering-based ensemble learning prediction methodology for dam deformation considering spatiotemporal differentiation

机译:基于DP-GMM聚类的集合学习预测方法,用于考虑时空分化的坝变形

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The deformation behavior can effectively reflect the health status of a dam, which can suffer from dynamic and time-varying loading modes and material properties, exhibiting distinct spatiotemporal differentiation. The conventional dam health evaluations, however, focus on the displacement regularity of local monitoring points, ignoring the spatiotemporal diversity in deformation behavior, and thus cannot truly reflect the status of the entire dam. Moreover, most of the existing displacement predictions are conducted on a single-algorithm machine-learning-based model, which focuses on single-task regression and disregards the potential cross-relatedness among the deformation in adjacent areas of the dam, showing less competitiveness in complex input?output relationship learning for various spatiotemporal conditions. For more reliable deformation forecasting, an integrated displacement prediction methodology considering spatiotemporal differentiation is proposed based on the spatiotemporal clustering and machine learning algorithms, in which the minimum-densityentropy-optimized density peaks clustering method is embedded with Gaussian-mixture-model-based clustering to achieve the reliable spatiotemporal differentiation identification of dam behavior and a multioutput ensemble learning framework coupled with the extreme learning machine and support vector machine is designed to capture the complex mapping from environmental factors to deformation, considering the cross-relatedness and spatiotemporal diversity. Moreover, a synchronous optimization strategy based on improved grey wolf optimization is embedded to enhance the performance. Hence, the final deformation behavior is forecasted by the ensemble learning of various data features and mapping rules. Taking the displacement observations of an actual dam as an example, the results show that the proposed methodology achieves excellent performance in dam behavior forecasting.
机译:变形行为可以有效地反映坝的健康状况,这可能患有动态和时变的加载模式和材料特性,表现出明显的时空分化。然而,传统的坝体健康评估重点关注局部监测点的位移规律,忽略了变形行为中的时空多样性,因此无法真正反映整个大坝的地位。此外,大多数现有的位移预测是在一个基于单算法的机器学习的模型上进行的,这侧重于单任务回归,并忽略了大坝相邻区域的变形之间的潜在交叉相关性,显示出较少的竞争力复杂输入?输出关系学习各种时空条件。对于更可靠的变形预测,基于时空聚类和机器学习算法提出了考虑时稳态分化的集成位移预测方法,其中嵌入了基于高斯 - 混合模型的聚类的最小密度优化的密度峰聚类方法达到坝行为的可靠时空分化识别,以及与极端学习机器耦合的多开展集合学习框架,支持矢量机器旨在捕获从环境因素到变形的复杂映射,考虑到交叉相关性和时空多样性。此外,嵌入了基于改进的灰狼优化优化的同步优化策略来提高性能。因此,通过集合学习各种数据特征和映射规则预测最终变形行为。作为一个例子,采用实际大坝的位移观察,结果表明,该方法在大坝行为预测中实现了出色的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号