...
首页> 外文期刊>Journal of Volcanology and Geothermal Research >The use of UAV remote sensing for observing lava dome emplacement and areas of potential lahar hazards: An example from the 2017-2019 eruption crisis at Mount Agung in Bali
【24h】

The use of UAV remote sensing for observing lava dome emplacement and areas of potential lahar hazards: An example from the 2017-2019 eruption crisis at Mount Agung in Bali

机译:使用无人机遥感观察熔岩圆顶展开和潜在的拉哈尔危险区域:巴厘岛山山爆发危机的一个例子

获取原文
获取原文并翻译 | 示例
           

摘要

Mount Agung (the highest volcano in Bali, Indonesia) began to erupt on November 21, 2017, after having been dormant for 53 years. More than 100,000 people were evacuated within the hazard zone between September 2017 (when the highest volcanic alert was issued) and early 2018. The eruptions continued until June 2019, accompanied by at least 110 explosions. During the eruptive crisis, the observation of the lava dome's emplacement was essential for mitigating the potential hazard. Details of the lava dome growth, including the volumetric changes and effusion rates, provide valuable information about potential eruption scenarios and lahar depositions. In this paper, the essential role of multi-temporal unmanned aerial vehicle (UAV) images in the monitoring of Mt. Agung's lava dome, and in determining the areas of potential lahar hazards during the crisis between 2017 and 2019 is described. A fixed-wing UAV was launched outside the hazard zone to photograph the lava dome on five occasions. Image enhancement, machine learning, and photogrammetry were combined to improve image quality, remove point clouds outliers, and generate digital terrain models (DTMs) and orthoimages. The analysis of the obtained DTMs and orthoimages resulted in qualitative and quantitative data highlighting the changes inside the crater and on the surrounding slopes. These results reveal that, from November 25 to December 16, 2017, the lava dome grew vertically by 126 m and reached a volume of 26.86 +/- 0.64 x 10(6) m(3.) In addition, its surface experienced a maximal uplift of approximately 52 m until July 2019 with the emergence of a new dome with a volume estimated at 9.52 +/- 0.086 x 10(6) m(3). The difference between the DTMs of 2017 and 2019 reveals the total volume of erupted material (886,100 +/- 8000 m(3)) that was deposited on the surrounding slopes. According to the lahar inundation simulation, the deposited material may cause dangerous lahars in 21 drainages, which extend in the north (N), north-east (N-E), south (S), south-east (S-E), and south-west (S-W) sectors of the volcano. This paper presents the use of UAV remote sensing for the production of high-spatial resolution DTMs, which can be used to both observe the emplacement of a lava dome, and to identify areas with potential lahar risk during a volcano crisis. (C) 2021 Elsevier B.V. All rights reserved.
机译:Agung山(印度尼西亚巴厘岛最高的火山)于2017年11月21日开始爆发,经过53年的休眠。 2017年9月至2017年9月期间的危险区撤离了超过10万人)和2018年初。爆发持续到2019年6月,伴随着至少110次爆炸。在爆发性危机期间,观察熔岩圆顶的施加对于减轻潜在危害至关重要。熔岩圆顶增长的细节,包括体积变化和积液率,提供有关潜在爆发情景和拉哈尔沉积的有价值的信息。在本文中,描述了在2017年和2019年间危机期间的MT.Agung的熔岩穹顶监测中的多时间无人空中飞行器(UAV)图像的基本作用,以及在危机期间确定潜在的拉哈尔危险领域。固定翼UAV在危险区之外发射,在五个场合拍摄熔岩圆顶。组合图像增强,机器学习和摄影测量,以提高图像质量,删除点云异常值,并生成数字地形模型(DTM)和OrthoImages。对获得的DTM和OrthoImages的分析导致定性和定量数据突出了火山口内部和周围斜坡内的变化。这些结果表明,从11月25日至2017年12月16日,熔岩圆顶垂直增长126米,达到26.86 +/- 0.64 x 10(6)m(3。)的体积,其表面经历了最大值隆起大约52米到2019年7月,新圆顶的出现,体积估计为9.52 +/- 0.086 x 10(6)m(3)。 2017年和2019年DTM之间的差异显示出沉积在周围斜坡上的爆发材料的总体积(886,100 +/- 8000 m(3))。根据拉哈尔淹没模拟,沉积材料可能导致21个排水中的危险拉哈尔,该达哈尔延伸,该南部(N),东北(NE),南部,东南(SE)和西南部延伸(SW)火山的扇区。本文介绍了UAV遥感对生产高空间分辨率DTM的生产,这可以用于观察熔岩圆顶的施加,并在火山危机期间识别具有潜在拉哈尔风险的领域。 (c)2021 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号