首页> 外文期刊>Journal of Volcanology and Geothermal Research >Geochemical constraints on supercritical fluids in geothermal systems
【24h】

Geochemical constraints on supercritical fluids in geothermal systems

机译:地热系统超临界流体的地球化学约束

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Supercritical fluids with temperatures of similar to 400-500 degrees C have been reported from several active geothermal fields worldwide. Although the utilization of such fluids may multiply power production from new and already exploited geothermal systems, the fluid origin and chemical controls on their composition remain unclear. We performed flow-through high-temperature (400-420 degrees C) experiments at 34-69 bar to study the chemical and mineralogical changes associated with supercritical fluid formation upon boiling of subcritical geothermal fluids of varying chemical composition. Based on geochemical modeling and laboratory results, we propose that an important mechanism of supercritical fluid formation is conductive heating and boiling of subcritical geothermal groundwater by a magmatic intrusion. Such supercritical fluids will display low concentrations of mineral-forming elements (Si, Na, K, Ca, Mg, Al), with their concentrations being controlled by the solubility of salts, oxides, and aluminum silicates in high-temperature (400 degrees C) and low-density (rho 0.3 g cm(-3)) fluids. In contrast, supercritical fluids will show elevated concentrations of volatile elements (C, S, B) of crustal and/or mantle origin with their concentrations often being similar to those of subcritical geothermal fluids. Associated mineral deposition, dominated by quartz, aluminum silicates, and salts, may formin the vicinity of the intrusion. Comparison of the modeling and laboratory results with observed chemical composition of natural supercritical fluid discharges indicates that conductive heating and boiling of subcritical geothermal groundwater may indeed be the formation mechanism of such fluids observed for example at Krafla (Iceland), Menengai (Kenya), Los Humeros (Mexico), and Larderello (Italy) with an addition of volcanic gases in many cases. Metal and salt-rich supercritical fluids, for example, at Kakkonda (Japan), may also exist in geothermal systems. However, such supercritical fluids are considered to have been trapped upon crystallization of the magmatic intrusion. (C) 2020 Published by Elsevier B.V.
机译:全世界几个活跃地热田报道了具有与400-500摄氏度相似的超临界流体。尽管这种流体的利​​用可以从新的和已经利用的地热系统乘以电力产生,但它们的组合物上的流体来源和化学对照仍然不清楚。我们在34-69栏中进行了流过的高温(400-420摄氏度)实验,研究了与超临界流体形成相关的化学和矿物学变化,在不同化学组合物的亚临界地热流体上沸腾。基于地球化学建模和实验室结果,我们提出了一种超临界流体形成的重要机制是通过岩浆侵入的亚临界地热地下水的导电性加热和沸腾。这种超临界流体将显示低浓度的矿物形成元素(Si,Na,K,Ca,Mg,Al),其浓度通过盐,氧化物和铝硅酸盐在高温(> 400度)中的溶解度控制C)和低密度(RHO <0.3g cm(-3))流体。相反,超临界流体将显示出壳质和/或地幔起源的升高的挥发性元素(C,S,B),其浓度通常与亚临界地热流体的浓度类似。由石英,铝硅酸盐和盐的相关矿物沉积可以形成侵入的附近。与观察到的自然超临界流体排出的化学成分的建模和实验室结果的比较表明,亚临界地热地下水的导电加热和沸腾可能确实是在克拉夫拉(冰岛),梅奈邦(肯尼亚),洛杉矶(肯尼亚)观察到这种流体的形成机制在许多情况下,Humeros(墨西哥)和Larderello(意大利)加入火山气体。例如,在Kakkonda(日本),富含金属和富含盐的超临界流体也可能存在于地热系统中。然而,这种超临界流体被认为已经被捕获在岩浆侵入的结晶时。 (c)2020由elsevier b.v发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号