...
首页> 外文期刊>Journal of Volcanology and Geothermal Research >Impact of wind direction variability on hazard assessment in Martinique (Lesser Antilles): The example of the 13.5 ka cal BP Bellefontaine Plinian eruption of Mount Pelee volcano
【24h】

Impact of wind direction variability on hazard assessment in Martinique (Lesser Antilles): The example of the 13.5 ka cal BP Bellefontaine Plinian eruption of Mount Pelee volcano

机译:马提尼克岛(莱斯安的列斯群岛)的风向变化对危险性评估的影响:以佩里山火山13.5 ka cal BP Bellefontaine Plinian喷发为例

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The threat posed by powerful Plinian explosive eruptions, which inject large quantities of ash into the atmosphere and produce pyroclastic density currents (PDC) on ground, is mainly controlled by eruptive parameters and by the direction and strength of the wind field during the eruption. In most studies, mean wind profiles are used to investigate potential tephra deposit dispersion and to assess volcanic risk. Here we present a detailed reconstruction and reinterpretation of a poorly-understood eruption of Mount Pelee volcano (Martinique), and use it to demonstrate that exclusive use of the average trade wind profile can lead to a misrepresentation of the volcanic risk The great interest of this eruption stems from its unusual southward dispersion, which encompasses areas that are considered to be safe in current hazard maps and that host major infrastructure. Our new field study and radiocarbon dating show that these deposits are not part of the 2010 BP P3 eruptive sequence as previously thought, but define a so far unknown eruptive event dating back to 13,516 cal BP, which we propose to name the Bellefontaine eruption. The Bellefontaine sequence consists of a basal grey lithic-rich layer resulting from an explosive opening phase that destroyed a pre-existing lava dome, immediately followed by a much thicker, slightly reverse-graded white pumice-fall layer. Their dispersal, thickness, and grain-size distribution are used together with physical models of a volcanic plume to reconstruct the time evolution of the eruption. We find that the mass eruption rate reached 5 x 10(7) kg s(-1), producing a 20-km-high Plinian plume, and that the minimum volume of pyroclastic deposits was 0.18 km(3) DRE. 2D simulations of tephra dispersion in the atmosphere performed with HAZMAP show that, unlike the recent eruptions at Mount Pelee volcano, mean seasonal wind profiles cannot explain the southward dispersal of the Bellefontaine deposits. To understand the origin of this unusual dispersion axis, we retrieve forty years of wind data over Martinique by using global atmospheric reanalyses from 1979 by the European Center for Medium-Range Weather Forecasts ERA Interim (hereafter ERA-Interim) and ERA5 (hereafter ERAS). We find that, contrary to previous assumptions, this eruption did not necessarily occur during extreme weather conditions associated with the passing of a hurricane. Looking in detail into the ERA Interim datasets, we observe that the wind direction variability over the past 40 years is very low during the dry season (from December to May), and much larger during the wet season (from June to November), even in the troposphere (approximate to 0 to 18 km), which can occasionally result in northerly winds in the mid- to high troposphere over Martinique. As a similar eruption today would spread volcanic material as far as the prefecture of Fort-de-France and its international airport, a zone classified as safe in current hazard maps, this study highlights the importance of including daily variability of winds in hazard assessment models when considering Plinian eruptions. (C) 2019 Elsevier B.V. All rights reserved.
机译:强大的普利尼爆发性爆发所构成的威胁,主要是由爆发参数以及爆发过程中风场的方向和强度控制,这些爆发将大气中的大量灰烬注入大气中并在地面上产生火山碎屑密度流(PDC)。在大多数研究中,平均风廓线用于调查潜在的特非拉沉积物扩散和评估火山风险。在这里,我们对Pelee山火山(马提尼克岛)的火山喷发进行了详尽的重构和重新解释,并用它来证明,仅使用平均商贸剖面可能会导致对火山风险的误解。喷发源于其不寻常的向南分散,其中包括在当前灾害地图中被认为是安全的且拥有主要基础设施的区域。我们的新的野外研究和放射性碳测年表明,这些沉积物不像以前认为的那样是2010 BP P3喷发序列的一部分,但定义了一个迄今未知的,可追溯到13516 cal BP的喷发事件,我们建议将其命名为Bellefontaine喷发。 Bellefontaine序列由基底灰色的富含石块的层组成,该层是由爆炸性的开放阶段形成的,该阶段破坏了先前存在的熔岩穹顶,然后紧随其后的是厚得多的,稍有反梯度的白色浮石掉落层。它们的散布,厚度和粒度分布与火山羽的物理模型一起用于重建喷发的时间演化。我们发现质量喷发速率达到5 x 10(7)kg s(-1),产生20 km高的Plinian羽状流,并且火山碎屑沉积物的最小体积为0.18 km(3)DRE。使用HAZMAP进行的大气中特氟拉扩散的二维模拟显示,与最近的佩利山火山喷发不同,平均季节风廓线无法解释贝莱方丹沉积物的向南扩散。为了了解此异常弥散轴的起源,我们使用欧洲中期气象预报中心ERA临时(以下称ERA中期)和ERA5(以下称ERAS)自1979年以来对全球大气进行的重新分析,检索了马提尼克岛40年的风数据。 。我们发现,与以前的假设相反,这种喷发不一定发生在与飓风过去有关的极端天气条件下。详细查看ERA Interim数据集后,我们发现过去40年的风向变化在旱季(从12月到5月)非常低,而在雨季(从6月到11月)甚至更大。在对流层(大约为0至18 km),有时会在马提尼克岛上至中高对流层产生北风。由于今天类似的喷发会将火山物质传播到法兰西堡及其国际机场所在地,该地区在当前危险地图中被列为安全区域,因此该研究强调了将风的每日变化纳入危险评估模型的重要性在考虑普林尼火山爆发时。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号